

Radio detection of Ultrahigh-Energy Cosmic Rays and Neutrinos

Jaime Alvarez-Muñiz IGFAE & Departamento de Física de Partículas Universidade de Santiago de Compostela, Spain

First Joint Workshop IGFAE/LIP – Braga, May 4, 2018

Ultrahigh-Energy Cosmic-Ray (UHECR) Flux

Cosmic-ray energies up to 10²⁰ eV (~ 16 Joule) observed !! ...but...

- Sources? Nature (protons, heavier nuclei,...)?
- What is causing flux suppression?,
 - Propagation in the CMB ($p\gamma \rightarrow p \pi^0$ or $n \pi^+$ the **GZK-effect**)
 - Sources run out of power?

 (z-evolution) not accessible through measurements of spectrum or composition

Neutrino fluxes: data & upper limits

The lack of neutrino observations above 10¹⁶ eV is driving an intense & exciting experimental activity

Radio detection technique

Idea:

measure radiation in MHz – GHz range emitted in UHECR & v-induced showers in atmosphere or dense dielectric media (Antartctic ice,...)

Main advantages of radio technique

AIR:

- ✓ Almost 100% duty cycle
- ✓ Calorimetric CR energy measurement
- ✓ Sensitivity to primary CR mass
- Relatively cheap & simple detectors: antennas
- ✓ Coherent emission i.e. Power ~ (E_{CR})² up to few 10's MHz

DENSE MEDIA: (density ~ 1 g/cm³)

- v interaction probability proportional to target density
- ✓ Large volumes of dielectric & transparent media in Earth (Antarctica)
- ✓ Cost-effective detectors: antennas
- ✓ Coherent emission up to few GHz

Experimental initiatives: air showers

Mainly ground arrays of antennas sensitive in the 10's MHz frequency range

Experimental initiatives: dense media

Buried or balloon-borne arrays of antennas sensitive in the 100 MHz – GHz frequency range

ARIANNA

ARA

ANITA

Radio-emission in showers:

- Moving charged particles radiate.
- In a shower most numerous charged particles are electrons & positrons: most radiation from electromagnetic component
- ...but... in a first approximation showers are neutral: e- & e+ are produced in equal numbers: $\pi^0 \rightarrow \gamma \gamma \rightarrow e^-e^+$
- ...however, net charge (& hence radiation) is induced through 2 dominant mechanisms:

Geomagnetic mechanism

Separation of e- & e+ in the magnetic field (B) of the Earth induces electric current (J_{geo}) parallel to $(\mathbf{v} \times \mathbf{B})$. Electric field: ~ B sin α $(\alpha = angle between \mathbf{B} and \mathbf{v})$.

Charge-excess (Askaryan) mechanism

~ 20% excess e- over e+ because shower drags atomic e- of atmosphere into shower flow, mainly due to Compton:

γe -(medium) $\rightarrow \gamma e$ -(shower)

Approx. polarization pattern on shower plane around shower axis

Electric field: Monte Carlo simulations at IGFAE

Data vs MC modeling

P. Gorham et al. PRL 99, 171101 (2007);...

J.A-M, W.R. Carvalho, E.Zas, Astropart. Phys. **35**, 325 (2012) H. Schoorlemmer, J.A-M.,...

AERA:

Auger Engineering Radio Array

- Radio extension of the Pierre Auger Observatory
- Array of 153 antennas covering 17 km²
- Events measured simultaneously with antennas and water Cherenkov stations

Radio & SD event

12

Cosmic-Ray energy determination in AERA

Energy emitted in radio in an event:

Single station data: obtain energy fluence eV/m²

Fit to a 2D Lateral Distribution Function.

Integrate LDF in (x,y), obtain total energy emitted in radio (S_{radio}) for each event.

Cross-calibrate S_{radio} with $E_{\text{CR}}\,$ using events detected simultaneously with Auger SD & AERA

Data: $E_{radio} = 15.8 + - 6.7$ (sys) for $E_{CR} = 10^{18} \text{ eV}$

ZHAireS simulations: $E_{radio} = 11.3 \text{ MeV for } E_{CR} = 10^{18} \text{ eV}$

Radiation energy can be used for calibration of CR energy across different experiments !

Primary Cosmic-Ray mass composition with AERA

The shape of the 2-dimensional distribution of the electric field amplitude at ground depends on the mass of the primary:

- \checkmark correlation of shape of radio footprint and depth of shower maximum X_{max}
- ✓ narrower 2D distribution for light nuclei compared to heavier nuclei

Primary Cosmic-Ray mass composition with AERA

Simple "brute-force" procedure to obtain X_{max} : For each detected event:

- 1. perform MC simulations of radio emission in showers with:
 - fixed energy & arrival direction (derived from data)
 - variable composition & X_{max}
- 2. Find the simulation that best fits data (minimum χ^2) => X_{max} value

Several analysis carried out at AERA. X_{max} resolution ~ 30 – 40 g/cm²

Alternative method to determine primary CR mass by-passing the reconstruction of Xmax in J.A-M & W.R. Carvalho Jr. arXiv:1712.03544

S. Hoover et al. ANITA Collab. Phys. Rev. Lett. 105, 151101 (2010)

UHECR spectrum measured with ANITA

First UHECR flux derived only with radio

Obtained from 14 reflected events (17 more seen in a later flight)

Energy reconstruction of events based on ZHAireS simulations at IGFAE

J. A-M, W.R. Carvalho Jr., D. García-Fernández, H. Schoorlemmer, E. Zas, Astropart. Phys. 66, **31** (2015). H. Schoorlemmer,..., J.A-M, W.R. Carvalho, E. Zas & ANITA Collab., Astropart. Phys. **77**, 32 (2016).

E ~ 0.6 +/- 0.4 EeV

-27.4 deg.

0.6

- Arrived at payload ~27.4° & -35.0° below horizontal
 - "Direct" CR atmospheric-skimming shower excluded
- Mostly **horizontally polarized**:

GRAND: Giant Radio Array for Neutrino Detection

~ 200,000 self-triggering antenna array to be deployed over 200,000 km²

- Mountaineous site => enhance Earth-Skimming ν_τ
- Challenges: efficient noise rejection, deployment over vast area,...
- GRANDproto35:
 - 35 antennas
 - 24 scintillators (CR of $E > 2 \ 10^{17} \text{ eV}$)
- 300 antennas/300 km² engineering array in 2019

K. Fang, J. A-M et al. PoS (ICRC2017) 996; arXiv: 1708.05128 [astro-ph]. Whitepaper to appear soon.

The Moon as a UHE neutrino detector

Conclusions & Outlook

- Radio detection has evolved from a promising technique to a real alternative for UHECR & neutrino detection.
- Wide range of experiments in dense media and in the atmosphere already working and in the planning stage.
- Expertise of simulations of radio emission in IGFAE is well-exploited in many of these experiments and in the design of future ones.

Backup

The Askaryan effect

- "Entrainment" of electrons from medium as shower evolves.

Due to MeV photons & electrons interacting through:

G. Askar´yan, Soviet Phys. JETP **14**, 441 (1962)

- As a consequence an excess of electrons over positrons

develops in the shower:

$$\Delta q = \frac{N(e^{-}) - N(e^{+})}{N(e^{-}) + N(e^{+})} \approx 25\%$$

G.A. Askaryan

- Excess develops in any medium with bound electrons.

Effect confirmed in beam experiments at SLAC - D. Saltzberg et al. PRL 86 (2001)

The radio technique in dense media

4 ANITA flights:

J. Nam, ANITA Collab. ICRC 2017

ANITA-I: 2006/07 – 0 v, 16 UHECR detected ANITA-II: 2008/09 – 0 v, 1 UHECR, 1 intriguing evt. ANITA-III & IV: 2014/15 & 16/17 – analysis on-going 3.6 x sensitivity of ANITAIII, 20% smaller threshold.

ANITA II - best limit at $E > 3 \ 10^{19} \text{ eV}$

ANITA-I, II, III & IV

NASA Long Duration Balloon flights

~ 37 km altitude over Antarctica carrying antenna payload: 200 – 1200 MHz

- Large ice volume monitored:

 $V_{eff} \Omega \sim 2 \times 10^4 \text{ km}^3 \text{ sr} @ 10^{18} \text{ eV}$

- Relatively small livetime: ~ 1 month
- Relatively large $E_{threshold} > 10^{18} \text{ eV}$ (showers at ~100 km distance)

ARIANNA

Ground-based 1296-antenna array 10³ km² buried just below surface of Ross Ice Shelf

- 4 LPDA antennas/station: 80 MHz 1.3 GHz
- $E_{\text{threshold}} \sim 10^{17} \text{ eV}$, $V_{\text{eff}} \Omega \sim 450 \text{ km}^3 \text{ sr} @ 10^{18} \text{ eV}$
- long livetime: ~ several years
- Prototype Hexagonal Radio Array (7 stations) working reliably for the last 2 years.
- data from 3 station in 10 months $=> 1^{st}$ limits

ARIANNA Coll. Astroparticle Phys. 70, 12 (2015) S.Barwick, ICRC 2017 2

ANTARCTICA

RGENTINA

CHILE

ARA37-station antenna array covering ~100 km² buried 200 m below surface at South Pole

- 8 HPol + 8 Vpol ant./station: 150 800 MHz
- $E_{thresh} \sim 5 \times 10^{16} \text{ eV}$, $V_{eff} \Omega \sim 200 \text{ km}^3 \text{ sr} @ 10^{18} \text{ eV}$
- long livetime ~ several years
- 3 stations deployed 3 more in 2017/18 (including a phased array to lower threshold)
- data from TestBed prototype:

no v candidates => 1^{st} limits

ARA & ARIANNA: studying ice properties

ARA: Askaryan Radio Array

ARA Collab. Astroparticle Phys. **35**, 457 (2012), Astroparticle Phys. **70**, 62 (2015). M. Lu, ICRC17. A. Vieregg, ICRC17, J. Kelley ICRC17

UHECR spectrum with radio: ANITA & ARIANNA

from review T. Huege, D.Z. Besson, Prog. Exp. Theor. Phys. in press. arXiv:1701.02987

Square-Kilometer-Array projected sensitivity

NOTE: All limits & models per flavor. Differential ones converted to 1 decade in log10(E)

Background noise

Detecting UHEv (& CRs) with SKA (Square Kilometer Array)

- world's largest radio telescope
 - 1 km² of total collecting area
 - thousands of antennas
 - to be built in Australia & South Africa
- broad scientific goals: astronomical & cosmological obs.
- "phased array": observe multiple regions of sky simultaneously
- large livetime for Moon observ.

