LHCb highlights

Cibrán Santamarina Universidade de Santiago de Compostela LIP-IGFAE meeting 2019,4th April, Braga

LHCb Upgrade

- Run experiment at a luminosities 5 times greater than presently.
- Greatly improve trigger efficiency on hadronic channels and on rare decays.
- Expand scope to the lepton flavor sector, electroweak physics, QCD exotics and searches.
- Current 1 MHz L0 trigger output is a severe limitation.
 - Remove the L0 hardware trigger and readout an event at every bunch crossing (40 MHz). Use an efficient fully software trigger.
 - New front-end electronics and New DAQ system.

LS₂

Install upgrade

Run 3

Current VELO

- Silicon strip detector 84 sensors (R + φ measurements per module). 2048 channels (strips per sensor).
- Capable of 1 MHz readout.
- Exists in 2 retractable halves and can move. The closest distance of the active silicon to the LHC beam is 8.2 mm.
- Radiation hard,7×10¹⁴ 1MeVn_{eq}cm⁻² for full lifetime.

• CO₂ cooling.

VELO Upgrade

- Moving from Silicon Strips to Pixels.
- Sensors are thinner, 300 µm to 200 µm.
- 41M pixels (current:172k strips).
- High readout rate, up to 40 MHz.
- Large number of modules, 42 to 52.
- Reducing distance from beam, 8.2mm to 5.1mm
- Sensor temperature < -20 °C
- Power dissipation / module ~ 28 W.

1st joint Workshop IGFAE/LIP in High-Energy Physics -Braga, 04 May 2018

Cibrán Santamarina Ríos

- Improved Radiation Hardness.
- Huge data bandwidth: up to 20 Gbit/s for central ASICs and ~ 3 Tbit/s in total.
- New microchannel evaporative CO₂ cooling.
- Thinner RF foil, 300 µm to 250 µm.
- High tracking efficiency.
- Measure the impact parameter with high precision.
- High granularity.

All prototypes have been delivered and are undergoing testing:

- Qualification of sensors.
- · Velopix testing.
- · Test of the readout electronic chain.
- Test of the cooling system.

Production, reception, qualification and assembly steps move in parallel. Schedule is tight.

VELO Upgrade

- Weak interaction is the only source of CP violation in the SM.
 - Explained by CKM matrix.
 - CKM matrix: unitary, 3*3 describing quarkflavour changing charged-current Ws.
- Unitarity matrix \rightarrow Unitarity triangles.
- Probing the unitarity triangle.
 - Deviations would indicate BSM Physics.
 - If SM is correct all measurements must agree on the apex of the triangle.

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

CP violation in the SM

1st joint Workshop IGFAE/LIP in High-Energy Physics -Braga, 04 May 2018

Cibrán Santamarina Ríos

CP violation in the strange sector

Strange decays play a major role in particle physics:

- For BSM at $\mathcal{O}(\text{TeV})$, it might only be seen if there are new sources of flavour violation
- $s \rightarrow d$ transitions have the strongest suppression in the SM: $V_{td}V_{ts}^* \sim 10^{-4}$
- In a Non-Mininimal-Flavour-Violating (Non-MFV) paradigm, they have the highest sensitivity

 $\rightarrow \mu^+\mu^-$

- Flavour-changing neutral current (FCNC) transition
- Dominated by long distance contributions through $K^0_{S/L} \to \gamma \gamma$
- Notably new light scalars can affect K_S^0 exclusively
- Model-independent bounds on the CP-violating phase of the $s
 ightarrow dl^+ l^-$ amplitude
- SM prediction: $\mathcal{B}(K_S^0 \to \mu^+ \mu^-) = (5.0 \pm 1.5) \times 10^{-12}$ [Nucl. Phys. B366 (1991) 189][JHEP 01 (2004) 009]

Figure: (a): Long distance contribution. (b) Short distance contributions. [JHEP 01 (2004) 009]

The second triangle

- Despite of its flatness there is a second triangle that, given the reached precision measurements, allows to perform CKMetrics.
- Its main parameter is the β_s angle.

$$\beta_s \equiv \arg\left[-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right]$$

– In time dependent analysis of $B_s^0 \rightarrow J/\psi \phi$ and similar decays.

$B_{ m s}^{0} ightarrow J/\psi\phi$

The time dependent asymmetry of $B^0_s \to (c\overline{c})(s\overline{s})$ decays is given by:

$$A_{CP}(t) = \frac{\Gamma_{B_s^0(t) \to J/\psi\phi} - \Gamma_{\bar{B}_s^0(t) \to J/\psi\phi}}{\Gamma_{B_s^0(t) \to J/\psi\phi} + \Gamma_{\bar{B}_s^0(t) \to J/\psi\phi}} = \frac{-\Im\lambda_{J/\psi\phi} \sin \Delta mt}{\cosh \frac{1}{2}\Delta\Gamma t + \Re\lambda_{J/\psi\phi} \sinh \frac{1}{2}\Delta\Gamma t}$$

Where

$$\lambda_{J/\psi\phi} = \left(\frac{q}{p}\right)_{B_s^0} \left(\eta_{J/\psi\phi} \frac{\bar{A}_{J/\psi\phi}}{A_{J/\psi\phi}}\right) = (-1)^l \left(\frac{V_{tb}^* V_{ts}}{V_{tb} V_{ts}^*}\right) \left(\frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}}\right)$$

$$\Im \lambda_{J/\psi\phi} = (-1)^l \sin(-2\beta_s)$$

Which means we can access to β_s in time dependent analyses of these modes.

 V_{bc}^*

 B_s^0

 J/ψ

$\boldsymbol{\phi}^{c\bar{c}}_{s} = -2\beta_{s}$

- Global fit: φ^{cc}_s = −21 ± 31 mrad [HFLAV] dominated by LHCb [PRL 114, 041801 (2015)].
 - In agreement with the SM value $\phi^{cc}s^{SM} = 0.0376 \pm 0.0008$
- Penguin pollution under control [JHEP 1503 (2015) 145].
- LHCb measurement of $\phi^{cc}{}_{s}$ in $B_{s}{}^{0}\rightarrow J/\psi K^{+}K^{-}$ above the $\phi(1020)$ region [JHEP 08 (2017) 037].
 - 1st time $\phi^{cc}{}_{s}$ measured in tensor final states.
- New LHCb average (including J/ $\psi \phi$ and J/ $\psi \pi \pi$): $\phi^{cc}_{s} = 1 \pm 37$ mrad.

					bs
Exp.	Mode	Lumi	ϕ_s [rad]		$\Delta \Gamma_s[$
LHCb	J/ψKK	$3 \mathrm{fb}^{-1}$	$-0.058 \pm 0.049 \pm 0.006$	[PRL 114, 041801 (2015)]	
	J/\psiKK HM	3fb^{-1}	$+0.119\pm0.107\pm0.034$	[arXiv:1704.08217]	
	$J/\psi \pi \pi$	$3 {\rm fb}^{-1}$	$-0.070 \pm 0.068 \pm 0.008$	[PLB 736 (2014) 186]	
	$\psi(2S)\phi$	$3 \mathrm{fb}^{-1}$	$+0.23^{+0.29}_{-0.28}\pm0.02$	[PLB 762 (2016) 253]	
	$D_s^+ D_s^-$	$3 {\rm fb}^{-1}$	$+0.02\pm 0.17\pm 0.02$	[PRL 113, 211801 (2014)]	
ATLAS	$J/\psi\phi$	$19.2{\rm fb}^{-1}$	$-0.098 \pm 0.084 \pm 0.040$	[JHEP 1608 (2016) 147] 2016	
CMS	$J/\psi\phi$	$19.7{\rm fb}^{-1}$	$-0.075\pm0.097\pm0.031$	[PLB 757 (2016) 97] 2016	
Average	-	-	-0.021 ± 0.031	[HFLAV]	
Theory	-	-	-0.0376 ± 0.0008	[CKMFitter]	

1st joint Workshop IGFAE/LIP in High-Energy Physics -Braga, 04 May 2018

Cibrán Santamarina Ríos

Charmless $B \rightarrow V_1 V_2$

- Suppressed compared to charmed:
 - b \rightarrow u tree.
 - b \rightarrow s, b \rightarrow d loops.
- More sensitive to NP.
- Mediated by three smallest CKM matrix elements.
- V_1 and V_2 : angular momentum L = 0,1,2.
- High longitudinally polarization expected:
 - Additional effects (rescattering) could produce smaller polarizations.
- Angular pdf depends on:
 - Polarization fractions: $|A_0|^2$, $|A_{||}|^2$, $|A_{\perp}|^2$
 - Strong phases: δ_{\parallel} , δ_{\perp}
 - If final state is common to B_s^0 and B_s^0 :
 - CP-violating phase: $\phi_{(s)}$ in time dependent analyses.
 - If final state is not common to the B mesons CP: asymmetries.

- Time dependent analysis.
- Paradigm: new particles may enter the loop.
- Original approach:
 - Extended m(Kπ) range: 750–1600
 MeV/c²:
 - Scalar: K₀^{*}(1430)⁰ + Non Res
 - Vector: *K**(892)⁰
 - Tensor: K₂*(1430)⁰
- 3×3=9 decay channels. Commonφ_s^{dd̄} phase assumed. SM predicts it to be 0.
- Tagged, time-dependent, angular and 2-body invariant mass analysis.
- More than 6000 candidates with Run-1 data.

JHEP 1803 (2018) 140

 $B^0 \rightarrow K^{*0} \overline{K}^{*0}$

- First measurement of $\phi_s^{d\bar{d}}$, using $B_s^0 \rightarrow (K^+\pi^-)(K^-\pi^+)$ decays (including $B_s^0 \rightarrow K^{*0}\overline{K^{*0}}$), $\phi_s^{d\bar{d}} = -0.10 \pm 0.13 \pm 0.14$ rad. [JHEP 1803 (2018) 140]
- CP-asymmetry determination:
 |λ| = 1.035 ± 0.034 ± 0.089.
- Compatible with SM.
- Additional 37 observables, including polarization amplitudes. Confirmed low longitudinal VV polarization:

$$f_L = 0.208 \pm 0.032 \pm 0.046$$

JHEP 1803 (2018) 140

Polarization Summary of B \rightarrow V_1 V_2

- Large Longitudinal polarization confirmed in b \rightarrow u tree dominated decays (f_L~1).
- Penguin decays show intermediate-small longitudinal polarization fractions.
 - Exception in $B^0 \rightarrow K^{0*}\overline{K}^{*0}$.
 - Polarization puzzle.

Braga, 04 May 2018

- Would $b \rightarrow dq\bar{q}$ show higher f_L than $b \rightarrow sq\bar{q}$ penguins?

Rare decays

- SM predicts very small branching fractions ~10⁻⁹.
- Physics BSM can compete with sizeable effects.
 - In BF and other observables.
- Three main categories:
 - Flavor changing neutral currents.
 - Suppressed by weak loop In the SM.
 - Signatures: lepton pair (γ*, Z⁰ → μ⁺μ⁻) hard photon (B → K*γ).
 - Lepton flavor violating decays
 - E.g. $B \to e^{\pm} \mu^{\scriptscriptstyle \mp}.$ Strongly forbidden in the SM.
 - Flavor (non-)universality
 - Lepton couplings in SM are the same for the three generations of leptons (e,µ,τ). Possible NP if deviations e.g. in $B \rightarrow Ke^+e^-$ and $B \rightarrow K\mu^+\mu^-$.

How it works?

Model-independent description in an effective theory

 $\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{\text{tb}} V_{\text{ts}}^* \sum_{i} \mathcal{C}_i \mathcal{O}_i + \mathcal{C}'_i \mathcal{O}'_i$ Left-handed Right-handed, $\frac{m_s}{m_b}$ suppressed Wilson coefficients $\mathcal{C}_i^{(\prime)}$ encode short-distance physics, $\mathcal{O}_i^{(\prime)}$ corr. operators $b \to s\gamma \quad B \to \mu\mu \quad b \to s\ell\ell$ $\mathcal{O}_7^{(\prime)}$ photon penguin $\mathcal{O}_{q}^{(\prime)}$ vector coupling $\mathcal{O}_{10}^{(\prime)}$ axialvector coupling $\mathcal{O}_{S,P}^{(\prime)}$ (pseudo)scalar penguin

1st joint Workshop IGFAE/LIP in High-Energy Physics -Braga, 04 May 2018

Cibrán Santamarina Ríos

 $B_{(s)} \rightarrow \mu^+ \mu^-$

Relevant channel for BSM searches Highly suppressed in the SM.

[Bobeth et. al, PRL112, 101801 (2014)]

Sensitive to NP in $C_{10}\ensuremath{\,\&\/} C_{S,P}$.

Combined data of LHCb+CMS

[Nature 522 (2015) 68]

 $egin{aligned} \mathcal{B}(B^0_s o \mu^+ \mu^-) &= 2.8^{+0.7}_{-0.6} imes 10^{-9} \ \mathcal{B}(B^0 o \mu^+ \mu^-) &= 3.9^{+1.6}_{-1.4} imes 10^{-10} \end{aligned}$

Also ATLAS [Eur.Phys.J. C76 (2016) no.9, 513] $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = 0.9^{+1.1}_{-0.8} \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.2 \times 10^{-10}$ [95% CL]

LHCb published an update of the BF including part of LHC Run 2 data. [LHCb, PRL 118, 191801 (2017)]

•Again compatible with SM.

•First observation of $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ in a single experiment. 7.8 σ significance.

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$$

•B⁰ $\rightarrow \mu^+\mu^-$ consistent with absence of signal (1.6 σ significance).

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.5^{+1.2+0.2}_{-1.0-0.1}) \times 10^{-10}$$

Lepton Flavor Universality

- In the SM the weak interaction to charged leptons and the corresponding neutrino is μ⁻ universal (G^(e) = G^(μ) = G^(τ)).
 - Confirmed with high precision in $Z^0 \rightarrow I^+I^-$
- NP: Could violate lepton universality.
 - Charged Higgs.
 - Heavy W (W').
 - Leptoquarks…
- Lepton universality tests in tree-level decays.
 - Abundant $b \rightarrow clv$ semileptonic decay.
 - Well known in the SM.
 - Possible NP coupling mainly to 3rd family.
- Lepton universality tests in rare (loop-level) decays.
 - b \rightarrow sll
 - Forbidden at tree-level in SM
 - Sensitive to NP contributions in loops

Angular analysis of $B^0 \rightarrow K^*I^+I^-$

Decay described by 3 angles
 W=(θ_I, θ_{K*}, φ) and q².

- F_L , A_{FB} , S_i combinations of K^{*0} spin amplitudes depending on Wilson coefficients $C_7^{(\prime)}$, $C_9^{(\prime)}$, $C_{10}^{(\prime)}$ and form factors.
- Less sensitive observables where form factors cancel at leading order:

eg:
$$P_5' = \frac{S_5}{\sqrt{F_L(1-F_I)}}$$

[Descotes-Genon, JHEP 05 (2013) 137] B→K* form factors (LQCD) Non-factorizable corrections (charm loops, broad *cc* resonance)

1st joint Workshop IGFAE/LIP in High-Energy Physics -Braga, 04 May 2018

Cibrán Santamarina Ríos

Angular analysis of $B^0 \rightarrow K^*I^+I^-$

- Measure angular observables $F_{\rm L}$, $A_{\rm FB}$, $S_{3...9}$, P_5 ' in bins of q^2 .
- LHCb ATLAS, Belle show tension in P₅' with SM predictions.
- New analysis by Belle, separately for e and μ.
 2.6σ deviation for K*μμ
 1.1σ deviation for K*ee

Belle, PRL, 118, 111801 (2017)

Differential x-section in b→sl⁺l⁻decays

Cross-sections consistently lower than SM in low-q² region.

Lepton Universality in rare decays, R_K

$$R_{K} \equiv \frac{B(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-})}{B(B^{+} \rightarrow K^{+} e^{+} e^{-})}$$

- Theoretically clean
- Stringent test of LFU

Lepton universality in semileptonic decays: R_{D*}

 $R_{D^*} = \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})} \stackrel{\text{SM}}{=} 0.252 \pm 0.003 \text{ [PRD 85 (2012) 094025]}$

- Accurate SM prediction (hadronic uncertainties cancel).
- R_{D^*} <1 because of phase space.
- Two LHCb analyses:
 - Leptonic $\tau^- \rightarrow \mu^- \overline{\nu}_\mu \nu_\tau$ decay [PRL 115 (2015) 111803]
 - Hadronic $\tau^- \to \pi^+ \pi^- \pi^- (\pi^0) \nu_\tau$ decays [PRL 120 (2018) 17]
- Experimental challenges:
 - Final state neutrinos
 - Large backgrounds from partially reconstructed and misidentified decays

$$\mathbf{R}_{\mathbf{D*}}$$
 with $\overline{B}^0 \to D^{*+} \tau^- (\to \pi^+ \pi^- \pi^- (\pi^0) \nu_\tau) \overline{\nu}_\tau$ decays

• Normalize to $B^0 \rightarrow D^{*-}3\pi$ with the same final state suppressing systematics:

$$R_{D^*} = \frac{\mathcal{B}(B^0 \to D^{*-}\tau^+(\to 3\pi(\pi^0)\overline{\nu}_{\tau})\nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-}3\pi)} \times \frac{\mathcal{B}(B^0 \to D^{*-}3\pi)}{\mathcal{B}(B^- \to D^{*-}\mu^+\nu_{\mu})}$$

• Main background from hadronic $B \rightarrow D^* 3\pi X$ decays suppressed by exploiting τ lifetime

- (no bkg. from $B^0 \rightarrow D^{*-}\mu^+\nu_{\mu}$)

• BDT to suppress $B \rightarrow DD_{(s)}X$ background

[PRL 120 (2018) 17]

$\mathbf{R}_{\mathbf{D*}}$ with $\overline{B}^0 \to D^{*+} \tau^- (\to \pi^+ \pi^- \pi^- (\pi^0) \nu_\tau) \overline{\nu}_\tau$ decays

- 3D binned template fit to q², τ-lifetime and BDT.
- Templates from simulation, validated using control samples

 $R_{D^*} = 0.286 \pm \underbrace{0.019}_{\text{stat.}} \pm \underbrace{0.025}_{\text{syst.}} \pm \underbrace{0.021}_{\text{ext.}}$

 External inputs [PRD 87 (2013) 092001] [arXiv:1612.07233]

 $\begin{aligned} \mathcal{B}(B^0 \to D^{*-} 3\pi) &= (7.23 \pm 0.51) \times 10^{-3} \\ \mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_{\mu}) &= (4.88 \pm 0.10) \times 10^{-2} \end{aligned}$

• Dominant systematic uncertainty: Size of simulated samples

[PRL 120 (2018) 17]

Summary of R_D and R_{D*}

- Average of different final states an experiments.
- Including additional measurements, discrepancy of 4.1σ. With SM.
- Possible BSM scenarios (H⁺, W', LQs).

Global fits to b \rightarrow sll data

- Several global analyses performed to rare b decay data, assuming NP in one or more of the C_i's.
- Tension in SM fits at 4-5σ level if no NP allowed.

 $C_9^{(')}$ & $C_{10}^{(')}$ are Wilson coefficients for EW penguins

$$O_{9}^{(\prime)} = \left(\overline{s}\gamma_{\mu}P_{L(R)}b\right)\left(\overline{1}\gamma_{\mu}\right), \qquad O_{10}^{(\prime)} = \left(\overline{s}\gamma_{\mu}P_{L(R)}b\right)\left(\overline{1}\gamma_{\mu}\gamma_{5}\right)$$

Vector Axial vector

Possibly NP in the vector couplings?

Z', Leptoquarks, composite models, ... Problem in our understanding of QCD contributions?

More data required.

Capdevila *et al* JHEP 1801 (2018) 093

• Hypotheses "NP in some C_i only" (1D, 2D, 6D) to be compared with SM

	All			
1D Hyp.	Best fit	1 σ	2 σ	Pull _{SM}
$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	-1.11	[-1.28, -0.94]	[-1.45, -0.75]	5.8
$\mathcal{C}^{\mathrm{NP}}_{9\mu} = -\mathcal{C}^{\mathrm{NP}}_{10\mu}$	-0.62	[-0.75, -0.49]	[-0.88, -0.37]	5.3
$\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{9\mu}'$	-1.01	[-1.18, -0.84]	[-1.34, -0.65]	5.4
$\mathcal{C}_{9\mu}^{ m NP} = -3\mathcal{C}_{9e}^{ m NP}$	-1.07	[-1.24,-0.90]	[-1.40,-0.72]	5.8
	LFUV			
		LF	JV	
1D Hyp.	Best fit	LF Ι	JV 2 σ	Pull _{SM}
1D Hyp. $\mathcal{C}_{9\mu}^{\mathrm{NP}}$	Best fit	LFI 1 σ [-2.36, -1.23]	ΔV 2 σ [-3.04, -0.76]	Pull _{SM}
$1{ m D}$ Hyp. ${\cal C}_{9\mu}^{ m NP} = -{\cal C}_{10\mu}^{ m NP}$	Best fit -1.76 -0.66	LFI 1 σ [-2.36, -1.23] [-0.84, -0.48]	Δ 2 σ [-3.04, -0.76] [-1.04, -0.32]	Pull _{SM} 3.9 4.1
$\frac{1\text{D Hyp.}}{\mathcal{C}_{9\mu}^{\text{NP}} = -\mathcal{C}_{10\mu}^{\text{NP}}}$ $\mathcal{C}_{9\mu}^{\text{NP}} = -\mathcal{C}_{9\mu}^{\text{NP}}$	Best fit -1.76 -0.66 -1.64	LFI 1 σ [-2.36, -1.23] [-0.84, -0.48] [-2.13, -1.05]	2 σ [-3.04, -0.76] [-1.04, -0.32] [-2.52, -0.49]	Pull _{SM} 3.9 4.1 3.2

p-p inelastic cross section

- Other than flavor physics, LHCb slowly increasing its scope to other areas
 - QCD (soft, heavy ions, spectroscopy, exotic states)
 - EW and top physics
 - Higgs and BSM direct searches

QCD physics: example

*USC involved

arXiv:1803.10974

(submitted to JHEP) also, PhD thesis **A. Dosil**

- Measurement of the pp inelastic xsection at 13 TeV σ_{inel}=75.4±3.0±4.5 mb
- Main challenge: determination of integrated luminosity!

Nuclear modification factor for charged particles at LHCb

• Nuclear effects on single particle production evaluated with the nuclear modification factor: $d^2N_{\text{aph}} = d^2\sigma_{\text{aph}}$

$$R_{pPb} = \frac{\frac{d^2 N_{pPb}}{dp_T d\eta}}{\langle T_{pPb} \rangle \frac{d^2 \sigma_{pp}}{dp_T d\eta}} = \frac{\frac{d^2 \sigma_{pPb}}{dp_T d\eta}}{A \frac{d^2 \sigma_{pp}}{dp_T d\eta}}$$

- Incoherent superposition of nucleon-nucleon collisions would yield $R_{pPb} = 1$.
- Measurement of charged particle multiplicities can unravel the puzzle of Cold Nuclear Matter effects in p-Pb collisions
- Due to LHCb asymmetry three different observables can be measured in different unexplored ranges:

BSM searches

BSM direct searches: example

- Search for a dimuon resonance in the Y region. Sensitive to several models NMSSM, dark photons, ...
- First search that manages to look between the Ys and also goes closer to them than anyone else! (excellent mass resolution at LHCb)
 LHCb-PAPER-2018-008

Summary

- The flavor sector has produced some of the most successful recent results in particle physics.
- The indirect approach could lead us to the discovery of NP.
- For that a new upgraded detector is required.
- In the meanwhile... stringent tests and the discovery of new exotic particles have been achieved.

Exotic Spectroscopy

- Quarks form colorless objects:
 - mesons (qq)
 - baryons (qqq)
- Angular, spin and radial excitations ⇒ spectroscopy.
- Exotic spectroscopy: beyond 2- and 3quark systems: tetraquarks (qqqqq), pentaquarks (qqqqq)

Pentaquarks

- 14 July 2015: LHCb reported the observation of two particles $P_c^+(4450)$ and $P_c^+(4380)$ analyzing 26 000 $\Lambda_b^0 \rightarrow J/\psi pK^-$ decays.
- 9σ < significance.
- Argand plot favors interpretation of these resonances as pentaquarks.
 - Interference with Λ^* states allows to extract the phase in bins of $m_{J/\psi p}$.
 - Clear phase rotation for P_c(4450), direction consistent with Breit-Wigner amplitude Not conclusive for P_c(4380), need more statistics.

$$M = 4449.8 \pm 1.7 \pm 2.5 \text{ MeV}$$

$$\Gamma = 39 \pm 5 \pm 19 \text{ MeV}$$

$$\mathcal{F} = (4.1 \pm 0.5 \pm 1.1 \text{ (syst)})\%$$

1st joint Workshop IGFAE/LIP in High-Energy Physics -Braga, 04 May 2018

(a)

Tetraquarks

- 28 June 2016: LHCb reported observation of three new "exotic" particles X(4274), X(4500) and X(4700) and confirmation of existence of X(4140) (already seen by CDF) in the analysis of final J/ψφ states.
- Seem to be formed by two quarks and two antiquarks (tetraquark).
 - Alternative interpretation: strange charm charged meson pairs $D_s D_s^*$ bouncing off each other and rearranging their quark content to emerge as a J/ $\psi\phi$ system.

Contribution	J^{PC}	Significance	M_0 [MeV]	Γ_0 [MeV]	FF %
X(4140)	1^{++}	8.4σ	$4146.5{\pm}4.5_{-2.8}^{+4.6}$	$83{\pm}21{}^{+21}_{-14}$	$13{\pm}3.2{}^{+4.8}_{-2.0}$
X(4274)	1^{++}	6.0σ	$4273.3{\pm}8.3^{+17.2}_{-3.6}$	$56{\pm}11{}^{+8}_{-11}$	$7.1{\pm}2.5{}^{+3.5}_{-2.4}$
X(4500)	0^{++}	6.1σ	$4506 {\pm} 11 {}^{+12}_{-15}$	$92{\pm}21{}^{+21}_{-20}$	$6.6{\pm}2.4^{+3.5}_{-2.3}$
X(4700)	0^{++}	5.6σ	$4704 {\pm} 10 {}^{+14}_{-24}$	$120{\pm}31{}^{+42}_{-33}$	$12\pm 5{+9\over -5}$

1st joint Workshop IGFAE/LIP in High-Energy Physics -Braga, 04 May 2018

Cibrán Santamarina Ríos

Discovery of Ξ_{cc}^{++}

- 6th July 2017. The Ξ_{cc}^{++} baryon identified by LHCb in its decay $\Xi_{cc}^{++} \rightarrow \Lambda_c^{+} K^- \pi^+ \pi^+$
- Obtained in the analysis of 1.7 fb⁻¹ 2016 LHCb data.
- M_{Ecc++} =3621.40± 0.78 MeV
- Discovery opens a new field
 - Family of doubly charmed baryons related to
 - Ξ_{cc}^{++} predicted and will be searched for.

$B^0 \rightarrow K^{*0} \overline{K}^{*0}$

- U-spin partner of $B_s^{\ 0} \to K^{*0}\overline{K}^{*0}$ decay.
 - Controls its penguin pollution from subleading amplitudes
- First LHCb analysis of $B^0 \rightarrow K^{*0}\overline{K}^{*0}$.
 - Evidence by BaBar with

 $\mathcal{B} = (1.28 \ ^{+\ 0.35}_{-\ 0.30} \pm 0.11) imes 10^{-6}$ $f_L = 0.80 \ ^{+\ 0.10}_{-\ 0.12} \pm 0.06$

- Also analyzed by Belle
- Longitudinal polarization very high compared \overline{a} with $B_s^0 \rightarrow K^{*0} \overline{K}^{*0}$.
- LHCb untagged and time-integrated analysis.
 - Assuming $\Delta\Gamma \sim 0$ and negligible CPV.
 - Data sample seven times larger than the precedent ones.
- Statistical precision of 0.053 achieved in f_L .

Parameter	Value
f _L	$x.xxx \pm 0.053$

• Decay branching fraction determined improving the previous statistical uncertainty by a factor of 2: $\mathcal{B}(B^0 \to K^{*0}\overline{K}^{*0}) = (x.x \pm 1.9(\text{stat})) \times 10^{-7}$

 $\frac{\mathrm{d}^{5}\Gamma}{\mathrm{d}\cos\theta_{1}\mathrm{d}\cos\theta_{2}\mathrm{d}\phi\mathrm{d}m_{1}\mathrm{d}m_{2}} = \frac{9}{8\pi}\sum_{i=1}^{6}\sum_{j\geq i}\mathcal{R}e[A_{i}A_{j}^{*}F_{ij}\delta_{\eta_{i}\eta_{j}}]$

$$F_{ij} = \Phi_4(m_1, m_2) f_i f_j^* (2 - \delta_{ij})$$

$B^0 \rightarrow \rho^0 K^{*0}$

- Proceeds either via:
 - Doubly Cabibbo suppressed tree
 - $\quad Gluonic \ b \to s \ penguin$
- Vector partner of $B^0 \to K\pi$
- Similar amplitudes! (good for a_{CP} search)
- $\rho \rightarrow \omega$ interplay may enhance CP violating effect
- A model accounting for 10 decay channels (14 waves) is considered.
 - $[K^{*0}+(K\pi)]x[\rho^{0}+\omega+f_{0}(500)+f_{0}(980)+f_{0}(1370)]$
 - And the corresponding CP conjugated.
- World largest data sample. More than one order of magnitude increase.
- Triple products very sensitive to BSM.

i	Туре	A _i	$g_i(heta_1, heta_2,\phi)$	$M_i(m_1, m_2)$
1		$A^0_{\rho K^*}$	$cos \theta_1 cos \theta_2$	$M_{ ho}(m_1)M_{K^*}(m_2)$
2	$V_1 V$	$A^{ }_{\rho K^*}$	$\frac{1}{\sqrt{2}}$ sin θ_1 sin θ_2 cos ϕ	$M_{ ho}(m_1)M_{K^*}(m_2)$
3		$A^{\perp}_{\rho K^*}$	$rac{i}{\sqrt{2}}$ sin $ heta_1$ sin $ heta_2$ sin ϕ	$M_{ ho}(m_1)M_{K^*}(m_2)$
4		$A^0_{\omega K^*}$	$cos\theta_1 cos\theta_2$	$M_{\omega}(m_1)M_{K^*}(m_2)$
5	$V_2 V$	$A^{ }_{\omega K^*}$	$\frac{1}{\sqrt{2}}$ sin θ_1 sin θ_2 cos ϕ	$M_{\omega}(m_1)M_{K^*}(m_2)$
6		$A_{\omega K^*}^{\perp}$	$\frac{i}{\sqrt{2}}$ sin $ heta_1$ sin $ heta_2$ sin ϕ	$M_{\omega}(m_1)M_{K^*}(m_2)$
7	V_1S	$A^0_{\rho(K\pi)}$	$\frac{1}{\sqrt{3}}\cos\theta_1$	$M_{\rho}(m_1)M_{(K\pi)}(m_2)$
8	V_2S	$A^0_{\omega(K\pi)}$	$\frac{1}{\sqrt{3}}\cos\theta_1$	$M_{\omega}(m_1)M_{(K\pi)}(m_2)$
9	S_1V	$A_{f_0(500)K^*}^0$	$\frac{1}{\sqrt{3}}\cos\theta_2$	$M_{f_0(500)}(m_1)M_{K^*}(m_2)$
10	S_2V	$A_{f_0(980)K^*}^{0}$	$\frac{1}{\sqrt{3}}\cos\theta_2$	$M_{f_0(980)}(m_1)M_{K^*}(m_2)$
11	S_3V	$A_{f_0(1370)K^*}^{0}$	$\frac{1}{\sqrt{3}}\cos\theta_2$	$M_{f_0(1370)}(m_1)M_{K^*}(m_2)$
12	S_1S	$A_{f_0(500)(K\pi)}^0$	$\frac{1}{3}$	$M_{f_0(500)}(m_1)M_{(K\pi)}(m_2)$
13	<i>S</i> ₂ <i>S</i>	$A_{f_0(980)(K\pi)}^{0}$	$\frac{1}{3}$	$M_{f_0(980)}(m_1)M_{(K\pi)}(m_2)$
14	<i>S</i> ₃ <i>S</i>	$A_{f_0(1370)(K\pi)}^{0}$	$\frac{1}{3}$	$M_{f_0(1370)}(m_1)M_{(K\pi)}(m_2)$

M. Gronau, J. Zupan arXiv:hep-ph/0502139

CP violation and matter-antimatter balance

- Excess of matter over anti-matter in the universe.
- Sakharov's conditions (1967):
 - Unstable Proton: no baryon conservation.
 - Interactions violating C conjugation and CP symmetry: initial matter-antimatter balance upset.
 - Universe: phase of extremely rapid expansion. Prevents restoration of balance due to CPT symmetry.
- Standard Model. Two ways to break CP:
 - QCD: unobserved.
 - Weak force: verified. Accounts for a small portion.
 Net mass ~ only a single galaxy ☺.
- Physics beyond SM?
 - Flavor physics: excellent playground to search for BSM physics.

