

Unsupervised Machine Learning with Self-
Organizing Maps and K-Means algorithms

Celso Franco

Big Data meeting: 09/03/2018

Self-Organizing Maps (SOM): Overview

● A SOM is an artifcial neural network composed by a grid of output neurons
connected to an input layer There are no hidden layers!

● This type of neural network uses an unsupervised learning algorithm to
fnd clusters in data without any privileged knowledge a priori

● The algorithm maps a multidimensional training set in a 2D grid of neurons
in a way that preserves the original topological relationships

● It is widely used for speech and image recognition (it can identify, for
example, emotions in a face), but it can also be used as tool to defne
labeled learning samples for supervised classifcation tasks → train a deep
neural network with model independent learning samples

close events in the multidimensional space are mapped
in the same neuron or a in local group of neurons

Working principle

● The basic idea behind a SOM is the stimulated competition between neurons:

1) The “synapses” connecting the 2D grid of neurons to the multivariate input are
 assigned with random weights

2) All neurons compete for each training example with the winning neuron (as well
 as its close neighbours) being rewarded with an update of its synaptic weights

3) The end result is a 2D weight map that approximates the data distribution

The winning neuron is the one
closest to the training example

SOM architecture

Example of a weight map evolution:

2) 3)

1) The “synapses” connecting the 2D grid of neurons to the multivariate input are
 assigned with random weights

2) All neurons compete for each training example with the winning neuron (as well
 as its close neighbours) being rewarded with an update of its synaptic weights

3) The end result is a 2D weight map that approximates the data distribution

The winning neuron is the one
closest to the training example

SOM architecture

Example of a weight map evolution:

2) 3)

SOM algorithm: The competitive phase

• For each input vector X, of dimension D, a distance d is calculated for each
of the SOM neurons j (j = 1,…, N → total number of neurons):

● The neuron whose weight vector is the closest one to the input vector is
declared the winner → end of the algorithm’s competitive phase

● The winning neuron infuences its close neighbours → cooperative phase

d j(X) = √∑i=1

D
(x i − w ji)

2 weights associated to the
input-neuron connections

In most applications the euclidean distance is used as a discriminant
function to select the winning neuron

SOM algorithm: The cooperative phase

● Like in real brains, neurons that are close to an excited neuron tend to be
more active than those further away. This infuence is typically implemented
with a Gaussian function, using an initial neighbourhood radius σ:

● In addition to the decay of the topological neighbourhood with the distance,
the neighbourhood radius also decreases with time:

● The weights of the winning neuron and neighbouring neurons are updated
simultaneously (at the end of each training epoch)

h j ,i (X) = e
−d j, i(x)

2

2σ2

σ(t) = σ0 e
−t
τσ

Distance between a neuron j
and the winning neuron i(X)

SOM algorithm: The weights adaptation phase

● At the end of each training epoch the SOM weights are updated according to
the following rule:

● With the learning rate decreasing as

● The algorithm continues to iterate, repeating the competition-cooperation-
adaptation phases until the stopping criterium is reached (maximum number
of training epochs, marginal weight adaptations, etc)

Δw ji = α(t) .h ji (X)(t).(x i−w ji)

α(t) = α0 e
−t
τα

Learning rate parameter

With a proper choice of α0, σ0, TA, τσ, d, h, SOM size; the end result of the
algorithm is a 2D discrete map of a higher dimensional continuous input space

With a proper choice of α0, σ0, τα, τσ, d, h, SOM size; the end result of the
algorithm is a 2D discrete map of a higher dimensional continuous input space

Where to fnd a SOM algorithm?

● A Python library for a Self-Organizing Map is available from GitHub:

● SOMPY requires installation of the following packages:

● Then just type: python setup.py install

✔ numpy

✔ scipy

✔ scikit-learn

✔ numexpr

git clone https://github.com/sevamoo/SOMPY.git

✔ numpy

✔ scipy

✔ scikit-learn

✔ numexpr

✔ matplotlib

✔ pandas

✔ ipdb

How to use it?

● Using a jupyter notebook, one can type (example provided by the authors):

import matplotlib.pylab as plt
%matplotlib inline
import pandas as pd
import numpy as np
from time import time
import sompy

dlen = 200

Data1 = pd.DataFrame(data= 1*np.random.rand(dlen,2))
Data1.values[:,1] = (Data1.values[:,0][:,np.newaxis]
 + .42*np.random.rand(dlen,1))[:,0]

Data2 = pd.DataFrame(data= 1*np.random.rand(dlen,2)+1)
Data2.values[:,1] = (-1*Data2.values[:,0][:,np.newaxis]
 + .62*np.random.rand(dlen,1))[:,0]

Data3 = pd.DataFrame(data= 1*np.random.rand(dlen,2)+2)
Data3.values[:,1] = (.5*Data3.values[:,0][:,np.newaxis]
 + 1*np.random.rand(dlen,1))[:,0]

Data4 = pd.DataFrame(data= 1*np.random.rand(dlen,2)+3.5)
Data4.values[:,1] = (-.1*Data4.values[:,0][:,np.newaxis] + .5*np.random.rand(dlen,1))[:,0]

Data1 = np.concatenate((Data1,Data2,Data3,Data4))

fig = plt.figure()
plt.plot(Data1[:,0],Data1[:,1],'ob',alpha=0.2, markersize=4)
fig.set_size_inches(7,7)

import matplotlib.pylab as plt
%matplotlib inline
import pandas as pd
import numpy as np
from time import time
import sompy

dlen = 200

Data1 = pd.DataFrame(data= 1*np.random.rand(dlen,2))
Data1.values[:,1] = (Data1.values[:,0][:,np.newaxis]
 + .42*np.random.rand(dlen,1))[:,0]

Data2 = pd.DataFrame(data= 1*np.random.rand(dlen,2)+1)
Data2.values[:,1] = (-1*Data2.values[:,0][:,np.newaxis]
 + .62*np.random.rand(dlen,1))[:,0]

Data3 = pd.DataFrame(data= 1*np.random.rand(dlen,2)+2)
Data3.values[:,1] = (.5*Data3.values[:,0][:,np.newaxis]
 + 1*np.random.rand(dlen,1))[:,0]

Data4 = pd.DataFrame(data= 1*np.random.rand(dlen,2)+3.5)
Data4.values[:,1] = (-.1*Data4.values[:,0][:,np.newaxis] + .5*np.random.rand(dlen,1))[:,0]

Data1 = np.concatenate((Data1,Data2,Data3,Data4))

fig = plt.figure()
plt.plot(Data1[:,0],Data1[:,1],'ob',alpha=0.2, markersize=4)
fig.set_size_inches(7,7)

Training a 2D SOM formed by 400 neurons

➢ mapsPara instalar o SOMPY também é necessário instalarize = [20,20]

➢ som = sompy.SOMFactory.build(Data1, mapsize, mask=None, mapshape='planar', lattice='rect',
 normalization = 'var', initialization = 'pca', name='sompy',
 neighborhood = 'gaussian', training='batch')

➢ som.train(n_job=1, verbose='info', train_rough_radiusin=3.0, train_rough_len=15,
 train_finetune_radiusin=1.0, train_finetune_len=30)

➢ som.component_names = ['1','2']

➢ v = sompy.mapview.View2DPacked(50, 50, 'test',
 text_size=8)

➢ v.show(som, what='codebook', which_dim='all',
 cmap='jet', col_sz=6)

Plots a weight plane for each of the training variables
(darker colors represent larger weights)

➢ som.component_names = ['1','2']

➢ v = sompy.mapview.View2DPacked(50, 50, 'test',
 text_size=8)

➢ v.show(som, what='codebook', which_dim='all',
 cmap='jet', col_sz=6)

Plots a weight plane for each of the training
variables (darker colors represent larger weights)

➢ mapsize = [20,20]

➢ som = sompy.SOMFactory.build(Data1, mapsize, mask=None, mapshape='planar', lattice='rect',
 normalization = 'var', initialization = 'pca', name='sompy',
 neighborhood = 'gaussian', training='batch')

➢ som.train(n_job=1, verbose='info', train_rough_radiusin=3.0, train_rough_len=15,
 train_finetune_radiusin=1.0, train_finetune_len=30)

How to group neurons into a specifed number of clusters?

● One can use the K-Means algorithm as a tool to group data events of
similar multidimensional properties (data clusterization). Working principle:

1) Defne the desired number of clusters → N

2) Randomly initialize N cluster centroids C1, C2, …, CN ∈ Rn (a particularly
good choice is to initialize each centroid to the multivariate coordinates
of a diferent training event)

3) Assign each of the M training events to the closest centroid in the
multidimensional space

4) Update CN with the average of training events assigned to N

5) Repeat 3) and 4) to minimize:

J =
1
M∑i=1

M

∑ j=1

N
(x j

(i)
− C j

(i)
)

2

Distortion Function

K-Means algorithm: trivial example showing the
clusterisation of bidimensional data

unlabeled data

2 cluster
centroids

2 clusters of labeled
data after 4 iterations

How to fnd the ideal number of clusters N?

● A good approach to this problem is to build a plot showing the evolution of the
distortion function J with the number N of cluster centroids. In case the
distribution looks like the one below, the “elbow” criterium provides the ideal
number of clusters (in this case N = 3):

For other curves there is no optimal method to decide on N
(just choose the lowest N with a reasonably low J)

“elbow”

J

N

Applying the K-Means algorithm to the trained SOM

➢ som.cluster(n_clusters=4)

➢ getattr(som, 'cluster_labels')

● The clusterisation part is done as follows (add these instructions to the
jupyter notebook code):

● One can visualize the clusters formed by labeled neurons:

● And assign each data point to a specifc neuron:

runs the K-Means algorithm

➢ h = hitmap.HitMapView(10, 10, 'hitmap',
 text_size=8)

➢ h.show(som)

with 4 clusters

➢ som.project_data(Data1)

➢ h = hitmap.HitMapView(10, 10, 'hitmap',
 text_size=8)

➢ h.show(som)

➢ som.cluster(n_clusters=4)

➢ getattr(som, 'cluster_labels')

An example where the K-Means clusterisation is not adequate

dlen = 700
tetha = np.random.uniform(low=0,high=2*np.pi,size=dlen)[:,np.newaxis]

X1 = 3*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y1 = 3*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data1 = np.concatenate((X1,Y1),axis=1)
X2 = 1*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y2 = 1*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data2 = np.concatenate((X2,Y2),axis=1)
X3 = 5*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y3 = 5*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data3 = np.concatenate((X3,Y3),axis=1)
X4 = 8*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y4 = 8*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data4 = np.concatenate((X4,Y4),axis=1)

Data2 = np.concatenate((Data1,Data2,Data3,Data4),axis=0)
fig = plt.figure()
fig.set_size_inches(7,7)
plt.plot(Data2[:,0],Data2[:,1],'ob',alpha=0.2, markersize=4)

● The K-Means algorithm clearly fails when applied to
data with circular symmetry (after training the SOM):

dlen = 700
tetha = np.random.uniform(low=0,high=2*np.pi,size=dlen)[:,np.newaxis]

X1 = 3*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y1 = 3*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data1 = np.concatenate((X1,Y1),axis=1)
X2 = 1*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y2 = 1*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data2 = np.concatenate((X2,Y2),axis=1)
X3 = 5*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y3 = 5*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data3 = np.concatenate((X3,Y3),axis=1)
X4 = 8*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y4 = 8*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data4 = np.concatenate((X4,Y4),axis=1)

Data2 = np.concatenate((Data1,Data2,Data3,Data4),axis=0)
fig = plt.figure()
fig.set_size_inches(7,7)
plt.plot(Data2[:,0],Data2[:,1],'ob',alpha=0.2, markersize=4)

➢ v = sompy.mapview.View2DPacked(2, 2, 'test',text_size=8)

➢ som.cluster(n_clusters=4)

➢ v.show(som, what='cluster')

Identifying data clusters through the visualisation of the
weighted distances between SOM neurons: U-Matrix

● The U-Matrix of the trained SOM, which is used to visualise multidimensional
clusters in 2D (the weighted distances between neurons approximate the
topology of the data), is obtained as follows:

The clusters are clearly visible!

 group data points mapped in neurons with a light color
 (darker colors indicate larger separations between neurons)

➢ u = sompy.umatrix.UMatrixView(50, 50, 'umat', show_axis=True,
 text_size=8, show_text=True)

➢ u.build_u_matrix(som, distance=1, row_normalized=False)

➢ u.show(som, distance2=1, row_normalized=False, show_data=True,
 contooor=False, blob=False)

SOM clusterisation: An example of application in HEP

● One of the present goals of COMPASS is the determination of the Transverse
Momentum Dependent PDFs of the proton (and also of the pion) using the
Drell-Yan channel. The Drell-Yan events are cleanly selected if their dimuon
production is detected in the following mass range: M

mm
∈ [4.3, 8.5] GeV/c2

A SOM can be used to separate part of the low mass DY events from J/y,
y’, open-charm and comb. background dimuons in a model independent way

The Drell-Yan statistics could be
improved by almost a factor of 3 if
the mass range could be extended
to masses as low as 2.5 GeV/c2

An example of 2 dimuon clusters found by a SOM

● The following samples were clusterised, in two diferent neurons, by a SOM
algorithm trained with 12 variables (p

T
(m+m-), x

1
, x

2
, lepton angles in the dimuon

rest-frame, etc):

Data sample rich
in J/y events

Data sample rich in
open-charm + comb.
background events

These clusters can be used as learning samples in supervised algorithms,
such as Keras, in order to optimize the classifcation task

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

