Unsupervised Machine Learning with Self-Organizing Maps and K-Means algorithms

Celso Franco

Big Data meeting: 09/03/2018

Self-Organizing Maps (SOM): Overview

- A SOM is an artificial neural network composed by a grid of output neurons connected to an input layer \longrightarrow There are no hidden layers!
- This type of neural network uses an unsupervised learning algorithm to fnd clusters in data without any privileged knowledge a priori
- The algorithm maps a multidimensional training set in a 2D grid of neurons in a way that preserves the original topological relationships \sim

close events in the multidimensional space are mapped in the same neuron or a in local group of neurons

● It is widely used for speech and image recognition *(it can identify, for example, emotions in a face),* but it can also be used as tool to defne labeled learning samples for supervised classification tasks \rightarrow train a deep neural network with model independent learning samples

Working principle

• The basic idea behind a SOM is the <u>stimulated competition between neurons</u>:

- 1) The "synapses" connecting the 2D grid of neurons to the multivariate input are 1) The "synapses" connecting the 2D grid of neurons to the multivariate input are assigned with random weights assigned with random weights
- 2) All neurons compete for each training example with the winning neuron *(as well* 2) All neurons compete for each training example with the winning neuron *(as well as its close neighbours)* being rewarded with an update of its synaptic weights *as its close neighbours)* being rewarded with an update of its synaptic weights
	- 3) The end result is a 2D weight map that approximates the data distribution 3) The end result is a 2D weight map that approximates the data distribution

SOM algorithm: The competitive phase

• For each input vector **X**, of dimension **D**, a distance **d** is calculated for each of the SOM neurons \mathbf{j} $(j = 1,..., N \rightarrow total$ *number of neurons*):

In most applications the euclidean distance is used as a discriminant function to select the winning neuron

• The neuron whose weight vector is the closest one to the input vector is declared the winner \rightarrow end of the algorithm's competitive phase

The winning neuron influences its close neighbours \rightarrow **cooperative phase**

SOM algorithm: The cooperative phase

• Like in real brains, neurons that are close to an excited neuron tend to be more active than those further away. This influence is typically implemented with a Gaussian function, using an initial neighbourhood radius σ:

$$
\boxed{h_{j,i(X)} = e^{\frac{-d_{j,i(X)}^2}{2\sigma^2}}}
$$
 Distance between a neuron j and the winning neuron i(X)

• In addition to the decay of the topological neighbourhood with the distance, the neighbourhood radius also decreases with time:

$$
\sigma(t) = \sigma_0 e^{\frac{-t}{\tau_{\sigma}}}
$$

• The weights of the winning neuron and neighbouring neurons are updated simultaneously *(at the end of each training epoch)*

SOM algorithm: The weights adaptation phase

• At the end of each training epoch the SOM weights are updated according to the following rule:

$$
\Delta w_{ji} = \alpha(t) . h_{ji(X)}(t) . (x_i - w_{ji})
$$

Learning rate parameter

• With the learning rate decreasing as

$$
\alpha(\mathbf{t}) = \alpha_0 e^{\frac{-\mathbf{t}}{\tau_a}}
$$

• The algorithm continues to iterate, repeating the competition-cooperationadaptation phases until the stopping criterium is reached *(maximum number of training epochs, marginal weight adaptations, etc)*

With a proper choice of α₀, σ₀, σ₀, σ₀, σ₁, *h*, both size, the end result of the algorithm is a 2D discrete map of a higher dimensional continuous input space With a proper choice of ^α**0**, ^σ**0**, ^τα, ^τσ, **d**, **h**, **SOM size**; the end result of the algorithm is a 2D discrete map of a higher dimensional continuous input space

Where to fnd a SOM algorithm?

• A Python library for a Self-Organizing Map is available from GitHub:

git clone https://github.com/sevamoo/SOMPY.git

• **SOMPY** requires installation of the following packages:

● Then just type: **python setup.py install**

How to use it?

● Using a jupyter notebook, one can type *(example provided by the authors)*:

Training a 2D SOM formed by 400 neurons

How to group neurons into a specifed number of clusters?

• One can use the **K-Means algorithm** as a tool to group data events of similar multidimensional properties *(data clusterization)*. Working principle:

1) Define the desired number of clusters \rightarrow N

- 2) Randomly initialize <u>N cluster centroids</u> C_1 , C_2 , …, $C_N \in \mathbf{R}^n$ *(a particularly good choice is to initialize each centroid to the multivariate coordinates of a diferent training event)*
- 3) Assign each of the M training events to the closest centroid in the multidimensional space
- 4) Update C_N with the average of training events assigned to N
- **5) Repeat 3)** and 4) to minimize:

$$
J = \frac{1}{M} \sum_{i=1}^{M} \sum_{j=1}^{N} (x_j^{(i)} - C_j^{(i)})^2
$$

Distortion Function

K-Means algorithm: trivial example showing the clusterisation of bidimensional data

How to fnd the ideal number of clusters N?

• A good approach to this problem is to build a plot showing the evolution of the distortion function **J** with the number **N** of cluster centroids. In case the distribution looks like the one below, the "elbow" criterium provides the ideal number of clusters *(in this case N = 3)*:

For other curves there is no optimal method to decide on N (just choose the lowest N with a reasonably low J)

Applying the K-Means algorithm to the trained SOM

● The clusterisation part is done as follows *(add these instructions to the jupyter notebook code)*:

One can visualize the clusters formed by labeled neurons:

An example where the K-Means clusterisation is not adequate

- The K-Means algorithm clearly fails when applied to data with circular symmetry *(after training the SOM)*:
	- ➢ v = sompy.mapview.View2DPacked(2, 2, 'test',text_size=8)
	- ➢ som.cluster(n_clusters=4)
	- ➢ v.show(som, what='cluster')

Identifying data clusters through the visualisation of the weighted distances between SOM neurons: U-Matrix

• The **U-Matrix** of the trained SOM, which is used to visualise multidimensional clusters in 2D *(the weighted distances between neurons approximate the topology of the data)*, is obtained as follows:

➢ u = **sompy.umatrix.UMatrixView**(50, 50, 'umat', show_axis=True, text size=8, show text=True)

u.build u matrix(som, distance=1, row normalized=False)

 \geq u.show(som, distance2=1, row normalized=False, show data=True, contooor=False, blob=False)

The clusters are clearly visible!

 group data points mapped in neurons with a light color (darker colors indicate larger separations between neurons)

SOM clusterisation: An example of application in HEP

• One of the present goals of COMPASS is the determination of the Transverse Momentum Dependent PDFs of the proton *(and also of the pion)* using the Drell-Yan channel. The Drell-Yan events are cleanly selected if their dimuon production is detected in the following mass range: $\rm M_{_{\mu\mu}}$ E [4.3, 8.5] GeV/c 2

A SOM can be used to separate part of the low mass DY events from J/y, y**', open-charm and comb. background dimuons in a model independent way**

An example of 2 dimuon clusters found by a SOM

• The following samples were clusterised, <u>in two different neurons</u>, by a SOM algorithm trained with 12 variables ($p_{_{T}}(\mu^*\mu)$, $x_{_{1^{\prime}}}$, $x_{_{2^{\prime}}}$ *lepton angles in the dimuon rest-frame, etc)*:

These clusters can be used as learning samples in supervised algorithms, such as Keras, in order to optimize the classifcation task