Unsupervised Machine Learning with Self-Organizing Maps and K-Means algorithms

Celso Franco

Big Data meeting: 09/03/2018

Self-Organizing Maps (SOM): Overview

- A SOM is an artificial neural network <u>composed by a grid of output neurons</u> <u>connected to an input layer</u>
 —> There are no hidden layers!
- This type of neural network uses an <u>unsupervised learning algorithm</u> to find clusters in data without any privileged knowledge a priori
- The algorithm maps a multidimensional training set in a 2D grid of neurons in a way that preserves the original topological relationships —

close events in the multidimensional space are mapped in the same neuron or a in local group of neurons

• It is widely used for speech and image recognition (*it can identify, for example, emotions in a face*), but it can also be used as tool to define labeled learning samples for supervised classification tasks \rightarrow <u>train a deep neural network with model independent learning samples</u>

Working principle

• The basic idea behind a SOM is the <u>stimulated competition between neurons</u>:

- 1) The "synapses" connecting the 2D grid of neurons to the multivariate input are assigned with random weights
- 2) All neurons compete for each training example with the winning neuron (*as well as its close neighbours*) being rewarded with an update of its synaptic weights
- 3) The end result is a 2D weight map that approximates the data distribution

SOM algorithm: The <u>competitive phase</u>

• For each input vector **X**, of dimension **D**, a distance **d** is calculated for each of the SOM neurons **j** ($j = 1, ..., N \rightarrow total number of neurons$):

In most applications the euclidean distance is used as a discriminant function to select the winning neuron

• The neuron whose weight vector is the closest one to the input vector is declared the winner \rightarrow <u>end of the algorithm's competitive phase</u>

• The winning neuron influences its close neighbours → **cooperative phase**

SOM algorithm: The <u>cooperative phase</u>

 Like in real brains, neurons that are close to an excited neuron tend to be more active than those further away. <u>This influence is typically implemented</u> with a Gaussian function, using an initial neighbourhood radius σ:

$$\mathbf{h}_{j,i(X)} = e^{\frac{-d_{j,i(x)}^2}{2\sigma^2}}$$
Distance between a neuron j
and the winning neuron i(X)

• In addition to the decay of the topological neighbourhood with the distance, <u>the neighbourhood radius also decreases with time</u>:

$$\sigma(t) = \sigma_0 e^{\frac{-t}{\tau_{\sigma}}}$$

• The weights of the winning neuron and neighbouring neurons are updated simultaneously (at the end of each training epoch)

SOM algorithm: The <u>weights adaptation phase</u>

• At the end of each training epoch the SOM weights are updated according to the following rule:

$$\Delta w_{ji} = \alpha(t) \cdot h_{ji(X)}(t) \cdot (x_i - w_{ji})$$
 Learning rate parameter

• With the learning rate decreasing as

$$\alpha(\mathsf{t}) = \alpha_0 \mathsf{e}^{\frac{-\mathsf{t}}{\tau_\alpha}}$$

• The algorithm continues to iterate, repeating the competition-cooperationadaptation phases until the stopping criterium is reached (maximum number of training epochs, marginal weight adaptations, etc)

With a proper choice of α_o , σ_o , τ_α , τ_σ , d, h, SOM size; the end result of the algorithm is a 2D discrete map of a higher dimensional continuous input space

Where to find a SOM algorithm?

• <u>A Python library for a Self-Organizing Map is available from GitHub</u>:

git clone https://github.com/sevamoo/SOMPY.git

• **SOMPY** requires installation of the following packages:

• Then just type: python setup.py install

How to use it?

• Using a jupyter notebook, one can type (example provided by the authors):

Training a 2D SOM formed by 400 neurons

How to group neurons into a specified number of clusters?

• One can use the **K-Means algorithm** as a tool to group data events of similar multidimensional properties (*data clusterization*). <u>Working principle</u>:

1) Define the desired <u>number of clusters</u> \rightarrow **N**

- 2) Randomly initialize <u>N cluster centroids</u> C_1 , C_2 , ..., $C_N \in \mathbb{R}^n$ (a particularly good choice is to initialize each centroid to the multivariate coordinates of a different training event)
- 3) Assign each of the <u>M training events</u> to the closest centroid in the multidimensional space
- 4) Update C_N with the average of training events assigned to N
- 5) Repeat 3) and 4) to minimize:

$$J = \frac{1}{M} \sum_{i=1}^{M} \sum_{j=1}^{N} (|\mathbf{x}_{j}^{(i)} - \mathbf{C}_{j}^{(i)}|)^{2}$$

Distortion Function

K-Means algorithm: trivial example showing the clusterisation of bidimensional data

How to find the ideal number of clusters N?

• A good approach to this problem is to <u>build a plot showing the evolution of the</u> <u>distortion function J with the number N of cluster centroids</u>. In case the distribution looks like the one below, the "elbow" criterium provides the ideal number of clusters (in this case N = 3):

For other curves there is no optimal method to decide on N (just choose the lowest N with a reasonably low J)

Applying the K-Means algorithm to the trained SOM

• The clusterisation part is done as follows (add these instructions to the jupyter notebook code):

• One can <u>visualize the clusters</u> formed by labeled neurons:

An example where the K-Means clusterisation is not adequate

```
dlen = 700
tetha = np.random.uniform(low=0, high=2*np.pi, size=dlen)[:, np.newaxis]
X1 = 3^{np.cos(tetha)} + .22^{np.random.rand(dlen, 1)}
Y1 = 3*np.sin(tetha) + .22*np.random.rand(dlen, 1)
Data1 = np.concatenate((X1,Y1),axis=1)
X2 = 1^{np.cos(tetha)} + .22^{np.random.rand(dlen, 1)}
Y2 = 1*np.sin(tetha) + .22*np.random.rand(dlen, 1)
Data2 = np.concatenate((X2, Y2), axis=1)
X3 = 5*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y3 = 5*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data3 = np.concatenate((X3,Y3),axis=1)
X4 = 8*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y4 = 8*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data4 = np.concatenate((X4,Y4),axis=1)
Data2 = np.concatenate((Data1, Data2, Data3, Data4), axis=0)
fig = plt.figure()
fig.set size inches(7,7)
plt.plot(Data2[:,0],Data2[:,1],'ob',alpha=0.2, markersize=4)
```

- The K-Means algorithm clearly fails when applied to data with circular symmetry (*after training the SOM*):
 - > v = sompy.mapview.View2DPacked(2, 2, 'test',text_size=8)
 - > som.cluster(n_clusters=4)
 - > v.show(som, what='cluster')

Identifying data clusters through the visualisation of the weighted distances between SOM neurons: <u>U-Matrix</u>

• The **U-Matrix** of the trained SOM, <u>which is used to visualise multidimensional</u> <u>clusters in 2D</u> (the weighted distances between neurons approximate the topology of the data), is obtained as follows:

> u.build_u_matrix(som, distance=1, row_normalized=False)

The clusters are clearly visible!

group data points mapped in neurons with a light color (darker colors indicate larger separations between neurons)

SOM clusterisation: An example of <u>application in HEP</u>

• One of the present goals of COMPASS is the determination of the Transverse Momentum Dependent PDFs of the proton (and also of the pion) using the Drell-Yan channel. The Drell-Yan events are cleanly selected if their dimuon production is detected in the following mass range: $M_{\mu} \in [4.3, 8.5] \text{ GeV/c}^2$

A SOM can be used to separate part of the low mass DY events from J/ψ , ψ' , open-charm and comb. background dimuons in a model independent way

An example of 2 dimuon clusters found by a SOM

• The following samples were clusterised, in two different neurons, by a SOM algorithm trained with 12 variables $(p_T(\mu^*\mu), x_1, x_2, lepton angles in the dimuon rest-frame, etc)$:

These clusters can be used as learning samples in supervised algorithms, such as Keras, in order to optimize the classification task