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Self-Organizing Maps (SOM): Overview

● A SOM is an artifcial neural network composed by a grid of output neurons 
connected to an input layer             There are no hidden layers!

● This type of neural network uses an unsupervised learning algorithm to 
fnd clusters in data without any privileged knowledge a priori 

● The algorithm maps a multidimensional training set in a 2D grid of neurons 
in a way that preserves the original topological relationships

● It is widely used for speech and image recognition (it can identify, for 
example, emotions in a face), but it can also be used as tool to defne 
labeled learning samples for supervised classifcation tasks  →  train a deep 
neural network with model independent learning samples

close events in the multidimensional space are mapped 
in the same neuron or a in local group of neurons



  

Working principle

● The basic idea behind a SOM is the stimulated competition between neurons:

1)  The “synapses” connecting the 2D grid of neurons to the multivariate input are 
                   assigned with random weights

2)  All neurons compete for each training example with the winning neuron (as well 
                        as its close neighbours) being rewarded with an update of its synaptic weights

3)  The end result is a 2D weight map that approximates the data distribution 

The winning neuron is the one         
closest to the training example

SOM architecture

Example of a weight map evolution: 
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SOM algorithm: The competitive phase

• For each input vector X, of dimension D, a distance d is calculated for each 
of the SOM neurons j (j = 1,…, N → total number of neurons):

● The neuron whose weight vector is the closest one to the input vector is 
declared the winner   →   end of the algorithm’s competitive phase

● The winning neuron infuences its close neighbours → cooperative phase

d j(X) = √∑i=1

D
( x i − w ji )

2 weights associated to the 
input-neuron connections

In most applications the euclidean distance is used as a discriminant 
function to select the winning neuron 



  

SOM algorithm: The cooperative phase

● Like in real brains, neurons that are close to an excited neuron tend to be 
more active than those further away. This infuence is typically implemented 
with a Gaussian function, using an initial neighbourhood radius σ:

● In addition to the decay of the topological neighbourhood with the distance, 
the neighbourhood radius also decreases with time:

● The weights of the winning neuron and neighbouring neurons are updated 
simultaneously (at the end of each training epoch) 

h j ,i (X) = e
−d j, i(x )

2

2σ2

σ(t) = σ0 e
−t
τσ

Distance between a neuron j 
and the winning neuron i(X)



  

SOM algorithm: The weights adaptation phase 

● At the end of each training epoch the SOM weights are updated according to 
the following rule:

● With the learning rate decreasing as

● The algorithm continues to iterate, repeating the competition-cooperation-
adaptation phases until the stopping criterium is reached (maximum number 
of training epochs, marginal weight adaptations, etc)

Δw ji = α(t) .h ji (X)(t).(x i−w ji)

α(t) = α0 e
−t
τα

Learning rate parameter

With a proper choice of α0, σ0, TA, τσ, d, h, SOM size; the end result of the  
algorithm is a 2D discrete map of a higher dimensional continuous input space 

With a proper choice of α0, σ0, τα, τσ, d, h, SOM size; the end result of the  
algorithm is a 2D discrete map of a higher dimensional continuous input space 



  

Where to fnd a SOM algorithm?

● A Python library for a Self-Organizing Map is available from GitHub:

● SOMPY requires installation of the following packages:

 

● Then just type:  python setup.py install 

✔ numpy

✔ scipy

✔ scikit-learn

✔ numexpr

git clone https://github.com/sevamoo/SOMPY.git

✔ numpy

✔ scipy

✔ scikit-learn

✔ numexpr

✔ matplotlib

✔ pandas

✔ ipdb



  

How to use it? 

● Using a jupyter notebook, one can type (example provided by the authors): 

import matplotlib.pylab as plt
%matplotlib inline
import pandas as pd
import numpy as np
from time import time
import sompy

dlen = 200

Data1 = pd.DataFrame(data= 1*np.random.rand(dlen,2))
Data1.values[:,1] = (Data1.values[:,0][:,np.newaxis] 
                  + .42*np.random.rand(dlen,1))[:,0]

Data2 = pd.DataFrame(data= 1*np.random.rand(dlen,2)+1)
Data2.values[:,1] = (-1*Data2.values[:,0][:,np.newaxis] 
                  + .62*np.random.rand(dlen,1))[:,0]

Data3 = pd.DataFrame(data= 1*np.random.rand(dlen,2)+2)
Data3.values[:,1] = (.5*Data3.values[:,0][:,np.newaxis] 
                  + 1*np.random.rand(dlen,1))[:,0]

Data4 = pd.DataFrame(data= 1*np.random.rand(dlen,2)+3.5)
Data4.values[:,1] = (-.1*Data4.values[:,0][:,np.newaxis] + .5*np.random.rand(dlen,1))[:,0]

Data1 = np.concatenate((Data1,Data2,Data3,Data4))

fig = plt.figure()
plt.plot(Data1[:,0],Data1[:,1],'ob',alpha=0.2, markersize=4)
fig.set_size_inches(7,7)
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Training a 2D SOM formed by 400 neurons

➢ mapsPara instalar o SOMPY também é necessário instalarize = [20,20]

➢ som = sompy.SOMFactory.build(Data1, mapsize, mask=None, mapshape='planar', lattice='rect', 
                                  normalization = 'var', initialization = 'pca', name='sompy',
                                 neighborhood = 'gaussian', training='batch')  

➢ som.train(n_job=1, verbose='info', train_rough_radiusin=3.0, train_rough_len=15, 
            train_finetune_radiusin=1.0, train_finetune_len=30) 

➢ som.component_names = ['1','2']

➢ v = sompy.mapview.View2DPacked(50, 50, 'test',
                                   text_size=8)  

➢ v.show(som, what='codebook', which_dim='all', 
           cmap='jet', col_sz=6) 

Plots a weight plane for each of the training variables 
(darker colors represent larger weights)

➢ som.component_names = ['1','2']

➢ v = sompy.mapview.View2DPacked(50, 50, 'test',
                                   text_size=8)  

➢ v.show(som, what='codebook', which_dim='all', 
           cmap='jet', col_sz=6) 

Plots a weight plane for each of the training 
variables (darker colors represent larger weights)

➢ mapsize = [20,20]

➢ som = sompy.SOMFactory.build(Data1, mapsize, mask=None, mapshape='planar', lattice='rect', 
                                  normalization = 'var', initialization = 'pca', name='sompy',
                                 neighborhood = 'gaussian', training='batch')  

➢ som.train(n_job=1, verbose='info', train_rough_radiusin=3.0, train_rough_len=15, 
            train_finetune_radiusin=1.0, train_finetune_len=30) 



  

How to group neurons into a specifed number of clusters?

● One can use the K-Means algorithm as a tool to group data events of 
similar multidimensional properties (data clusterization). Working principle:

1) Defne the desired number of clusters → N

2) Randomly initialize N cluster centroids C1, C2, …, CN ∈ Rn (a particularly 
good choice is to initialize each centroid to the multivariate coordinates 
of a diferent training event)

3) Assign each of the M training events to the closest centroid in the 
multidimensional space 

4) Update CN with the average of training events assigned to N 

5) Repeat 3) and 4) to minimize: 

 

J =
1
M∑i=1

M

∑ j=1

N
( x j

( i)
− C j

(i )
)

2

Distortion Function



  

K-Means algorithm: trivial example showing the 
clusterisation of bidimensional data 

unlabeled data

2 cluster 
centroids

2 clusters of labeled 
data after 4 iterations



  

How to fnd the ideal number of clusters N?

● A good approach to this problem is to build a plot showing the evolution of the 
distortion function J with the number N of cluster centroids. In case the 
distribution looks like the one below, the “elbow” criterium provides the ideal 
number of clusters (in this case N = 3):

For other curves there is no optimal method to decide on N 
(just choose the lowest N with a reasonably low J)

“elbow”

J

N



  

Applying the K-Means algorithm to the trained SOM

➢ som.cluster(n_clusters=4)

➢ getattr(som, 'cluster_labels')

● The clusterisation part is done as follows (add these instructions to the 
jupyter notebook code):

● One can visualize the clusters formed by labeled neurons:

 

● And assign each data point to a specifc neuron:

runs the K-Means algorithm 

 

➢ h = hitmap.HitMapView(10, 10, 'hitmap',
                      text_size=8)

➢ h.show(som)

with 4 clusters

➢ som.project_data(Data1)

➢ h = hitmap.HitMapView(10, 10, 'hitmap',
                      text_size=8)

➢ h.show(som)

➢ som.cluster(n_clusters=4)

➢ getattr(som, 'cluster_labels')



  

An example where the K-Means clusterisation is not adequate

dlen = 700
tetha = np.random.uniform(low=0,high=2*np.pi,size=dlen)[:,np.newaxis]

X1 = 3*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y1 = 3*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data1 = np.concatenate((X1,Y1),axis=1)
X2 = 1*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y2 = 1*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data2 = np.concatenate((X2,Y2),axis=1)
X3 = 5*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y3 = 5*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data3 = np.concatenate((X3,Y3),axis=1)
X4 = 8*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y4 = 8*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data4 = np.concatenate((X4,Y4),axis=1)

Data2 = np.concatenate((Data1,Data2,Data3,Data4),axis=0)
fig = plt.figure()
fig.set_size_inches(7,7)
plt.plot(Data2[:,0],Data2[:,1],'ob',alpha=0.2, markersize=4)

● The  K-Means  algorithm  clearly  fails  when  applied  to 
data with circular symmetry (after training the SOM):

dlen = 700
tetha = np.random.uniform(low=0,high=2*np.pi,size=dlen)[:,np.newaxis]

X1 = 3*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y1 = 3*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data1 = np.concatenate((X1,Y1),axis=1)
X2 = 1*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y2 = 1*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data2 = np.concatenate((X2,Y2),axis=1)
X3 = 5*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y3 = 5*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data3 = np.concatenate((X3,Y3),axis=1)
X4 = 8*np.cos(tetha)+ .22*np.random.rand(dlen,1)
Y4 = 8*np.sin(tetha)+ .22*np.random.rand(dlen,1)
Data4 = np.concatenate((X4,Y4),axis=1)

Data2 = np.concatenate((Data1,Data2,Data3,Data4),axis=0)
fig = plt.figure()
fig.set_size_inches(7,7)
plt.plot(Data2[:,0],Data2[:,1],'ob',alpha=0.2, markersize=4)

➢ v = sompy.mapview.View2DPacked(2, 2, 'test',text_size=8)  

➢ som.cluster(n_clusters=4)

➢ v.show(som, what='cluster')



  

Identifying data clusters through the visualisation of the 
weighted distances between SOM neurons: U-Matrix

● The U-Matrix of the trained SOM, which is used to visualise multidimensional 
clusters in 2D (the weighted distances between neurons approximate the 
topology of the data), is obtained as follows:

The clusters are clearly visible!

 
      group data points mapped in neurons with a light color 
    (darker colors indicate larger separations between neurons)

➢ u = sompy.umatrix.UMatrixView(50, 50, 'umat', show_axis=True, 
                              text_size=8, show_text=True)

➢ u.build_u_matrix(som, distance=1, row_normalized=False)

➢ u.show(som, distance2=1, row_normalized=False, show_data=True, 
       contooor=False, blob=False)



  

SOM clusterisation: An example of application in HEP

● One of the present goals of COMPASS is the determination of the Transverse 
Momentum Dependent PDFs of the proton (and also of the pion) using the 
Drell-Yan channel. The Drell-Yan events are cleanly selected if their dimuon 
production is detected in the following mass range: M

mm
∈ [4.3, 8.5] GeV/c2

A SOM can be used to separate part of the low mass DY events from J/y, 
y’, open-charm and comb. background dimuons in a model independent way

The Drell-Yan statistics could be 
improved by almost a factor of 3 if 
the mass range could be extended 
to masses as low as 2.5 GeV/c2



  

An example of 2 dimuon clusters found by a SOM 

● The following samples were clusterised, in two diferent neurons, by a SOM 
algorithm trained with 12 variables (p

T
(m+m-), x

1
, x

2
, lepton angles in the dimuon 

rest-frame, etc): 

Data sample rich 
in J/y events

Data sample rich in 
open-charm + comb. 
background events

These clusters can be used as learning samples in supervised algorithms, 
such as Keras, in order to optimize the classifcation task  
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