

Physics opportunities at A Fixed Target ExpeRiment at the LHC (AFTER@LHC)

Jean-Philippe Lansberg IPN Orsay, Université Paris-Sud

September 6, 2013 LIP, Lisboa, Portugal

A Fixed Target ExpeRiment at the LHC

.

Part 1: Why a new fixed-target experiment for HEP now ?

イロト イポト イヨト イヨト

Part 1: Why a new fixed-target experiment for HEP now ?

Part 2: A Fixed-Target ExpeRiment using LHC beams: AFTER@LHC

- Part 1: Why a new fixed-target experiment for HEP now ?
- Part 2: A Fixed-Target ExpeRiment using LHC beams: AFTER@LHC
- Part 3: Flagship studies and news

- Part 1: Why a new fixed-target experiment for HEP now ?
- Part 2: A Fixed-Target ExpeRiment using LHC beams: AFTER@LHC
- Part 3: Flagship studies and news
- Part 4: Back to the future

- Part 1: Why a new fixed-target experiment for HEP now ?
- Part 2: A Fixed-Target ExpeRiment using LHC beams: AFTER@LHC
- Part 3: Flagship studies and news
- Part 4: Back to the future
- **Conclusions and Outlooks**

Part I

Why a new fixed-target experiment for HEP now ?

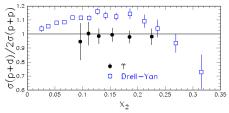
J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

September 6, 2013 3 / 40

Decisive advantages of Fixed-target experiments

• Fixed-target experiments offer specific **advantages** that are still nowadays **difficult to challenge by collider experiments**

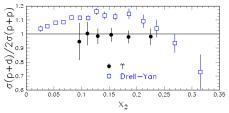

Decisive advantages of Fixed-target experiments

- Fixed-target experiments offer specific **advantages** that are still nowadays **difficult to challenge by collider experiments**
- They exhibit 4 decisive features,
 - accessing the high Feynman x_F domain ($x_F \equiv \frac{p_z}{p_{z_{max}}}$)
 - achieving high luminosities with dense targets,
 - varying the atomic mass of the target almost at will,
 - polarising the target.

E866 at Fermilab with the Tevatron beam

– **Precision** Υ studies in *pp* and *pd* collisions

E866 PRL 100 (2008) 062301



Precision: necessary to show a different behaviour from DY

E866 at Fermilab with the Tevatron beam

– Precision Υ studies in *pp* and *pd* collisions

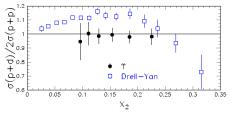
E866 PRL 100 (2008) 062301

Precision: necessary to show a different behaviour from DY

- Precision J/ψ and $\psi(2S)$ studies in pA collisions E866 PRL 84 (2000) 3256

Precision: necessary to show a different behaviour of $\psi(2S)$ vs. J/ψ

J.P. Lansberg (IPNO, Paris-Sud U.)


A Fixed Target ExpeRiment at the LHC

September 6, 2013 5 / 40

E866 at Fermilab with the Tevatron beam

– Precision Υ studies in *pp* and *pd* collisions

E866 PRL 100 (2008) 062301

Precision: necessary to show a different behaviour from DY

– Precision J/ψ and $\psi(2S)$ studies in pA collisions $_{ ext{E866 PRL 84}(2000) 3256}$

Precision: necessary to show a different behaviour of $\psi(2S)$ vs. J/ψ

J.P. Lansberg (IPNO, Paris-Sud U.)

ο.9 α _{0.8}

0.7

0.6

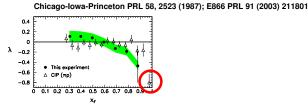
E866/NuSea

0.0 0.2

800 GeV p + A -> J/w

A Fixed Target ExpeRiment at the LHC

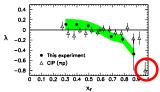
September 6, 2013 5 / 40


- Precision J/ψ polarisation (in the CS frame) studies at large x_F

Precision and reach in x_F : necessary to show the change of pol. pattern

A b

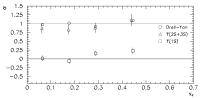
- Precision J/ψ polarisation (in the CS frame) studies at large x_F



Precision and reach in x_F : necessary to show the change of pol. pattern

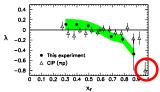
- **A**

- Tel - Se


- Precision J/ψ polarisation (in the CS frame) studies at large x_F

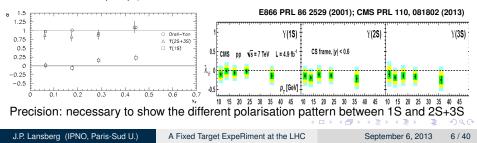
Chicago-Iowa-Princeton PRL 58, 2523 (1987); E866 PRL 91 (2003) 211801

Precision and reach in x_F : necessary to show the change of pol. pattern


- Precision $\Upsilon(nS)$ polarisation (in the CS frame) studies

E866 PRL 86 2529 (2001); CMS PRL 110, 081802 (2013)

Precision: necessary to show the different polarisation pattern between 1S and 2S+3S


- Precision J/ψ polarisation (in the CS frame) studies at large x_F

Chicago-Iowa-Princeton PRL 58, 2523 (1987); E866 PRL 91 (2003) 211801

Precision and reach in x_F : necessary to show the change of pol. pattern

- Precision $\Upsilon(nS)$ polarisation (in the CS frame) studies

Approved by the CERN council at the special Session held in Lisbon on July 14, 2006

Approved by the CERN council at the special Session held in Lisbon on July 14, 2006

9. A variety of important research lines are at the interface between particle and nuclear physics requiring dedicated experiments; *Council will seek to work with NuPECC in areas of mutual interest, and maintain the capability to perform fixed target experiments at CERN.*

Updated by the CERN council at the special Session held in Brussels on May 30, 2013

k. A variety of research lines at the boundary between particle and nuclear physics require dedicated experiments. The CERN Laboratory should maintain its capability to perform unique experiments. CERN should continue to work with NuPECC on topics pg 22, of the Strategy Update Brochure

Updated by the CERN council at the special Session held in Brussels on May 30, 2013

k. A variety of research lines at the boundary between particle and nuclear physics require dedicated experiments. The CERN Laboratory should maintain its capability to perform unique experiments. CERN should continue to work with NUPECC on topics of mutual interest.

Using the LHC beams, for the first time, the 100-GeV frontier can be broken at a fixed target experiment,

Updated by the CERN council at the special Session held in Brussels on May 30, 2013

- k. A variety of research lines at the boundary between particle and nuclear physics require dedicated experiments. The CERN Laboratory should maintain its capability to perform unique experiments. CERN should continue to work with NUPECC on topics of mutual interest.
- Using the LHC beams, for the first time, the 100-GeV frontier can be broken at a fixed target experiment,
 - without affecting the LHC performance
 - with an extracted beam line using a bent crystal

Updated by the CERN council at the special Session held in Brussels on May 30, 2013

k. A variety of research lines at the boundary between particle and nuclear physics require dedicated experiments. The CERN Laboratory should maintain its capability to perform unique experiments. CERN should continue to work with NUPECC on topics of mutual interest.

Using the LHC beams, for the first time,

the 100-GeV frontier can be broken at a fixed target experiment,

- without affecting the LHC performance
- with an extracted beam line using a bent crystal
- with the possibility of polarising the target
- without target-species limitation

Updated by the CERN council at the special Session held in Brussels on May 30, 2013

k. A variety of research lines at the boundary between particle and nuclear physics require dedicated experiments. The CERN Laboratory should maintain its capability to perform unique experiments. CERN should continue to work with NUPECC on topics of mutual interest.

Using the LHC beams, for the first time,

the 100-GeV frontier can be broken at a fixed target experiment,

- without affecting the LHC performance
- with an extracted beam line using a bent crystal
- with the possibility of polarising the target
- without target-species limitation
- with an outstanding luminosity, yet without pile-up
- with virtually no limit on particle-species studies (except top quark)

Updated by the CERN council at the special Session held in Brussels on May 30, 2013

k. A variety of research lines at the boundary between particle and nuclear physics require dedicated experiments. The CERN Laboratory should maintain its capability to perform unique experiments. CERN should continue to work with NUPECC on topics of mutual interest.

Using the LHC beams, for the first time,

the 100-GeV frontier can be broken at a fixed target experiment,

- without affecting the LHC performance
- with an extracted beam line using a bent crystal
- with the possibility of polarising the target
- without target-species limitation
- with an outstanding luminosity, yet without pile-up
- with virtually no limit on particle-species studies (except top quark)
- with modern detection techniques

Updated by the CERN council at the special Session held in Brussels on May 30, 2013

k. A variety of research lines at the boundary between particle and nuclear physics require dedicated experiments. The CERN Laboratory should maintain its capability to perform unique experiments. CERN should continue to work with NUPECC on topics of mutual interest.

Using the LHC beams, for the first time,

the 100-GeV frontier can be broken at a fixed target experiment,

- without affecting the LHC performance
- with an extracted beam line using a bent crystal
- with the possibility of polarising the target
- without target-species limitation
- with an outstanding luminosity, yet without pile-up
- with virtually no limit on particle-species studies (except top quark)
- with modern detection techniques

AFTER@LHC would definitely be a unique experiment _ ,

Part II

A fixed-target experiment using the LHC beam(s): AFTER@LHC

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

September 6, 2013 8 / 40

4 A N

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV}$

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

• In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger

4 **A** N A **B** N A **B** N

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM: $(p_{z,CM} = 0, E_{CM}^{\gamma} = p_T)$

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:

•
$$\begin{pmatrix} E_{Lab} \\ p_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma\beta \\ \gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} p_T \\ 0 \end{pmatrix}$$
 $(p_{z,CM} = 0, E_{CM}^{\prime} = p_T)$

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:

•
$$\begin{pmatrix} E_{Lab} \\ p_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma\beta \\ \gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} p_T \\ 0 \end{pmatrix}$$
 $(p_{z,CM} = 0, E_{CM}^T = p_T)$

• $p_{z,Lab} \simeq 60 p_T$! [A 67 MeV γ from a π^0 at rest in the CM can easily be detected.]

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
 - $\begin{pmatrix} E_{Lab} \\ p_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma \beta \\ \gamma \beta & \gamma \end{pmatrix} \begin{pmatrix} p_T \\ 0 \end{pmatrix}$ $(p_{z,CM} = 0, E_{CM}^{\gamma} = p_T)$
 - $p_{z,Lab} \simeq 60 p_T$! [A 67 MeV γ from a π^0 at rest in the CM can easily be detected.]
- Angle in the Lab. frame: $\tan \theta = \frac{\rho_T}{\rho_{z,Lab}} = \frac{1}{\gamma\beta} \Rightarrow \theta \simeq 1^\circ$.

[Rapidity shift: $\Delta y = tanh^{-1}\beta \simeq 4.8$]

・ 伺 ト ・ ヨ ト ・ ヨ ト … ヨ

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_{\rho}} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
 - $\begin{pmatrix} E_{Lab} \\ \rho_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma\beta \\ \gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} \rho_T \\ 0 \end{pmatrix}$ $(p_{z,CM} = 0, E_{CM}^{\gamma} = \rho_T)$
 - $p_{z,Lab} \simeq 60 p_T$! [A 67 MeV γ from a π^0 at rest in the CM can easily be detected.]
- Angle in the Lab. frame: $\tan \theta = \frac{p_T}{p_{z,Lab}} = \frac{1}{\gamma\beta} \Rightarrow \theta \simeq 1^\circ$.

[Rapidity shift: $\Delta y = tanh^{-1}\beta \simeq 4.8$]

• The entire forward CM hemisphere ($y_{CM} > 0$) within $0^{\circ} \le \theta_{Lab} \le 1^{\circ}$ [$y_{CM} = 0 \Rightarrow y_{Lab} \simeq 4.8$]

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_{\rho}} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
 - $\begin{pmatrix} E_{Lab} \\ p_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma\beta \\ \gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} p_T \\ 0 \end{pmatrix}$ $(p_{z,CM} = 0, E_{CM}^{\gamma} = p_T)$
 - $p_{z,Lab} \simeq 60 p_T$! [A 67 MeV γ from a π^0 at rest in the CM can easily be detected.]
- Angle in the Lab. frame: $\tan \theta = \frac{p_T}{p_{Z,Lab}} = \frac{1}{\gamma\beta} \Rightarrow \theta \simeq 1^\circ$.

[Rapidity shift: $\Delta y = tanh^{-1}\beta \simeq 4.8$]

• The entire forward CM hemisphere ($y_{CM} > 0$) within $0^{\circ} \le \theta_{Lab} \le 1^{\circ}$

 $[y_{CM}\,{=}\,0 \Rightarrow y_{Lab}\,{\simeq}\,4.8]$

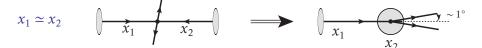
- Good thing: small forward detector \equiv large acceptance
- Bad thing: high multiplicity \Rightarrow absorber \Rightarrow physics limitation

Backward physics ?

• Let's adopt a novel strategy and look at larger angles

- Let's adopt a novel strategy and look at larger angles
- Advantages:
 - \cdot reduced multiplicities at large(r) angles
 - \cdot access to partons with momentum fraction $x \rightarrow 1$ in the target
 - · last, but not least, the beam pipe is in practice

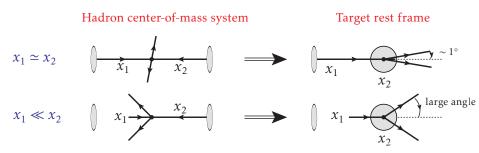
not a geometrical constrain at $\theta_{CM} \simeq 180^{\circ}$


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let's adopt a novel strategy and look at larger angles
- Advantages:
 - · reduced multiplicities at large(r) angles
 - \cdot access to partons with momentum fraction $x \rightarrow 1$ in the target
 - · last, but not least, the beam pipe is in practice

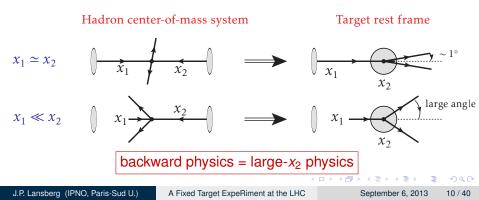
not a geometrical constrain at $\theta_{CM} \simeq 180^{\circ}$

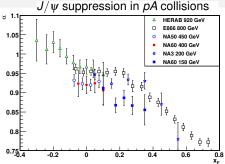
Hadron center-of-mass system


Target rest frame

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

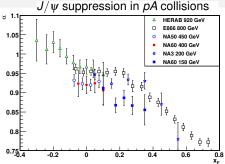
- Let's adopt a novel strategy and look at larger angles
- Advantages:
 - \cdot reduced multiplicities at large(r) angles
 - \cdot access to partons with momentum fraction $x \rightarrow 1$ in the target
 - · last, but not least, the beam pipe is in practice


not a geometrical constrain at $\theta_{CM} \simeq 180^{\circ}$

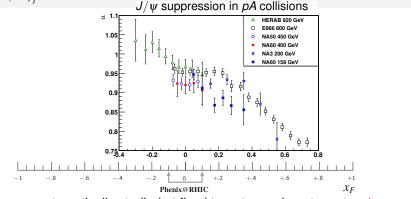

< ロ > < 同 > < 回 > < 回 >

- Let's adopt a novel strategy and look at larger angles
- Advantages:
 - · reduced multiplicities at large(r) angles
 - \cdot access to partons with momentum fraction $x \rightarrow 1$ in the target
 - · last, but not least, the beam pipe is in practice

not a geometrical constrain at $\theta_{CM} \simeq 180^{\circ}$

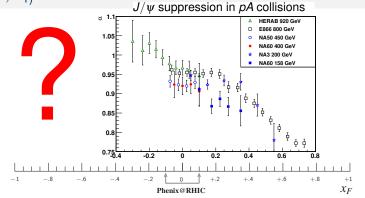


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >


• x_F systematically studied at fixed target experiments up to +1

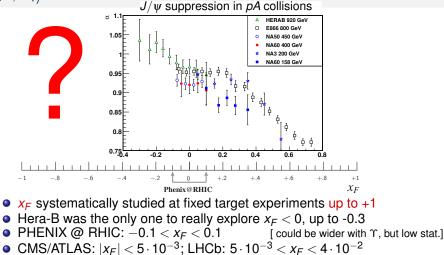
H 16

x_F systematically studied at fixed target experiments up to +1
 Hera-B was the only one to really explore *x_F* < 0, up to -0.3


- 4

- x_F systematically studied at fixed target experiments up to +1
- Hera-B was the only one to really explore $x_F < 0$, up to -0.3
- PHENIX @ RHIC: $-0.1 < x_F < 0.1$ [could be wider with Υ , but low stat.]
- CMS/ATLAS: $|x_F| < 5 \cdot 10^{-3}$; LHCb: $5 \cdot 10^{-3} < x_F < 4 \cdot 10^{-2}$

(4) (5) (4) (5)


4 A N

- x_F systematically studied at fixed target experiments up to +1
- Hera-B was the only one to really explore x_F < 0, up to -0.3
- PHENIX @ RHIC: $-0.1 < x_F < 0.1$ [could be wider with Υ , but low stat.]
- CMS/ATLAS: $|x_F| < 5 \cdot 10^{-3}$; LHCb: $5 \cdot 10^{-3} < x_F < 4 \cdot 10^{-2}$

(4) (5) (4) (5)

4 A N

• If we measure $\Upsilon(b\bar{b})$ at $y_{\rm cms} \simeq -2.5 \Rightarrow x_F \simeq \frac{2m_{\Upsilon}}{\sqrt{s}} \sinh(y_{\rm cms}) \simeq -1$

• Design LHC lead-beam energy: 2.76 TeV per nucleon

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \simeq 72 \text{ GeV}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \simeq 72 \text{ GeV}$
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \simeq 72 \text{ GeV}$
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)
- Example of motivations:

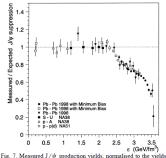


Fig. 7. Measured J/ψ production yields, normalised to the yields expected assuming that the only source of suppression is the ordinary absorption by the nuclear medium. The data is shown as a function of the energy density reached in the several collision systems.

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

September 6, 2013 12 / 40

.

< 17 ▶

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \simeq 72 \text{ GeV}$
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)
- Example of motivations:

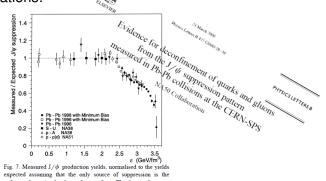


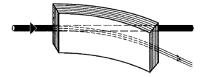
Fig. 7. Measured J/ψ production yields, normalised to the yields repected assuming that the only source of suppression is the ordinary absorption by the nuclear medium. The data is shown as a function of the energy density reached in the several collision systems.

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

September 6, 2013 12 / 40

→ ∃ →

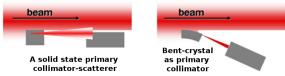

★ The LHC beam may be extracted using "Strong crystalline field" without any decrease in performance of the LHC !

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

4 D K 4 B K 4 B K 4 B K

★ The LHC beam may be extracted using "Strong crystalline field" without any decrease in performance of the LHC !


E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

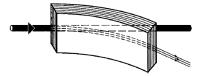

4 3 5 4 3

★ The LHC beam may be extracted using "Strong crystalline field" without any decrease in performance of the LHC !

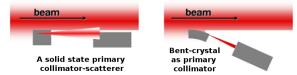
E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

★ Illustration for collimation

J.P. Lansberg (IPNO, Paris-Sud U.)


A Fixed Target ExpeRiment at the LHC

September 6, 2013 13 / 40

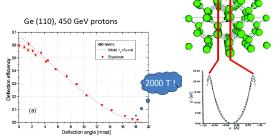

< ロ > < 同 > < 回 > < 回 >

★ The LHC beam may be extracted using "Strong crystalline field" without any decrease in performance of the LHC !

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

★ Illustration for collimation

★ Tests will be performed on the LHC beam:

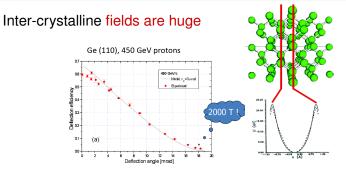

LUA9 proposal approved by the LHCC

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

September 6, 2013 13 / 40

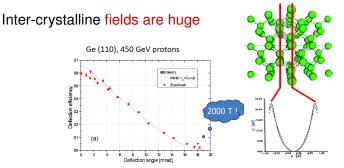
• Inter-crystalline fields are huge



J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

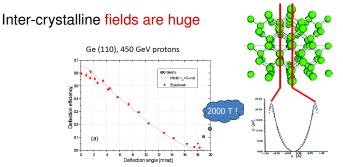
September 6, 2013 14 / 40


٩

• The channeling efficiency is high for a deflection of a few mrad

J.P. Lansberg (IPNO, Paris-Sud U.) A Fixed Target ExpeRiment at the LHC

•



The channeling efficiency is high for a deflection of a few mrad
 One can extract a significant part of the beam loss (10⁹p⁺s⁻¹)

The Sec. 74

14/40

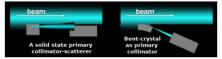
4 A N

- The channeling efficiency is high for a deflection of a few mrad
- One can extract a significant part of the beam loss $(10^9 p^+ s^{-1})$
- Simple and robust way to extract the most energetic beam ever:

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

The beam extraction: news


[S. Montesano, Physics at AFTER using LHC beams, ECT* Trento, Feb. 2013] Goal : assess the possibility to use bent crystals as primary collimators in hadronic accelerators and colliders

UA9 installation in the SPS

Prototype crystal collimation system at SPS :

- local beam loss reduction (5÷20x reduction for proton beam)
- beam loss map show average loss reduction in the entire SPS ring
- halo extraction efficiency 70÷80% for protons (50÷70% for Pb)

The beam extraction: news

[S. Montesano, Physics at AFTER using LHC beams, ECT* Trento, Feb. 2013] Goal : assess the possibility to use bent crystals as primary collimators in hadronic accelerators and colliders

LUA9 future installation in LHC

Prototype crystal collimation system at SPS :

- local beam loss reduction (5÷20x reduction for proton beam)
- beam loss map show average loss reduction in the entire SPS ring
- halo extraction efficiency 70÷80% for protons (50÷70% for Pb)

The beam extraction: news

[S. Montesano, Physics at AFTER using LHC beams, ECT* Trento, Feb. 2013] Goal : assess the possibility to use bent crystals as primary collimators in hadronic accelerators and colliders

LUA9 future installation in LHC

Prototype crystal collimation system at SPS :

- local beam loss reduction (5+20x reduction for proton beam)
- beam loss map show average loss reduction in the entire SPS ring
- halo extraction efficiency 70÷80% for protons (50÷70% for Pb)

Towards an installation in the LHC : propose and install during LSI a min. number of devices

• 2 crystals

Long term plan is ambitious : propose a collimation system based on bent crystals for the upgrade of the current LHC collimation system

• Expected proton flux $\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}$

<ロ> <四> <四> <四> <四> <四</p>

Luminosities

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathscr{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathscr{N}_{A}) / A$$

[*l*: target thickness (for instance 1cm)]

< 日 > < 同 > < 回 > < 回 > < 回 > <

Luminosities

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathscr{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathscr{N}_{A}) / A$$

[*l*: target thickness (for instance 1cm)]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Integrated luminosity: $\int dt \mathscr{L}$ over 10^7 s for p^+ and 10^6 for Pb

[the so-called LHC years]

Luminosities

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathscr{L} = \Phi_{beam} imes N_{target} = N_{beam} imes (
ho imes \ell imes \mathscr{N}_{A}) / A$$

[*l*: target thickness (for instance 1cm)]

• Integrated luminosity: $\int dt \mathscr{L}$ over 10^7 s for p^+ and 10^6 for Pb

[the so-called	LHC	years]
----------------	-----	--------

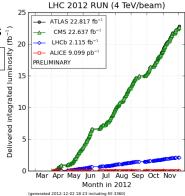
Target	ρ (g.cm -3)	A	£ (μb ⁻¹ .s ⁻¹)	∫£ (pb ^{.1} .yr ^{.1})
Sol. H ₂	0.09	1	26	260
Liq. H ₂	0.07	1	20	200
Liq. D ₂	0.16	2	24	240
Be	1.85	9	62	620
Cu	8.96	64	42	420
w	19.1	185	31	310
Pb	11.35	207	16	160

September 6, 2013 16 / 40

• 1 meter-long liquid H₂ & D₂ targets can be used (see NA51, ...)

イロト イポト イヨト イヨト

- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51, ...)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$

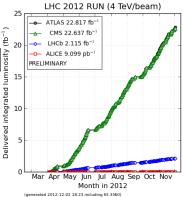

3

イロト 不得 トイヨト イヨト

Luminosities

- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51,...)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$
- Recycling the LHC beam loss, one gets $\hat{f_g}$

a luminosity comparable to the LHC itself !


A .

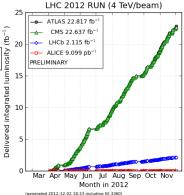
Luminosities

- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51,...)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$
- Recycling the LHC beam loss, one gets $\hat{f_g}$

a luminosity comparable to the LHC itself !

- PHENIX lumi in their decadal plan • Run14pp 12 pb⁻¹ @ $\sqrt{S_{NNN}} = 200 \text{ GeV}$
 - Run 14pp 12 pb $\frac{1}{2} @ \sqrt{s_{NN}} = 200 \text{ GeV}$
 - $\cdot \text{Run14}d\text{Au} \ 0.15 \text{ pb}^{-1} @ \sqrt{s_{NN}} = 200 \text{ GeV}$

4 A N


- A B M A B M

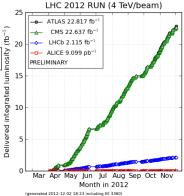
Luminosities

- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51,...)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$
- Recycling the LHC beam loss, one gets $\hat{f_g}$

a luminosity comparable to the LHC itself !

- PHENIX lumi in their decadal plan
 Run14pp 12 pb⁻¹ @ \sqrt{s_NN} = 200 GeV
 - $\cdot \text{Run14}d\text{Au} \ 0.15 \ \text{pb}^{-1} \ @ \sqrt{s_{NN}} = 200 \ \text{GeV}$
- AFTER vs PHENIX@RHIC: 3 orders of magnitude larger

A B F A B F


A D M A A A M M

Luminosities

- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51....)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$
- Recycling the LHC beam loss, one gets \hat{f}_{g}

a luminosity comparable to the LHC itself !

- PHENIX lumi in their decadal plan · Run14pp 12 pb⁻¹ @ $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - $\cdot \text{Run14}d\text{Au} \ 0.15 \text{ pb}^{-1} \ @ \sqrt{s_{NN}} = 200 \text{ GeV}$
- AFTER vs PHENIX@RHIC: 3 orders of magnitude larger
- Lumi for Pb runs in the backup slides (roughly 10 times that planned for the LHC)

< ロ > < 同 > < 回 > < 回 >

Luminosities

Instantaneous Luminosity:

$$\mathscr{L} = \Phi_{\textit{beam}} \times \textit{N}_{\textit{target}} = \textit{N}_{\textit{beam}} \times (\rho \times \ell \times \mathscr{N}_{\textit{A}}) / \textit{A}$$

 $\Phi_{beam} = 2 \times 10^5 \text{ Pb s}^{-1}, \quad \ell = 1 \text{ cm (target thickness)}$

- Integrated luminosity $\int dt \mathscr{L} = \mathscr{L} \times 10^6$ s for Pb
- Expected luminosities with 2×10⁵Pb s⁻¹ extracted (1cm-long target)

Target	ρ (g.cm-³)	Α	£ (mb ⁻¹ .s ⁻¹)=∫£ (nb ⁻¹ .yr ⁻¹)
Sol. H ₂	0.09	1	11
Liq. H ₂	0.07	1	8
Liq. D ₂	0.16	2	10
Ве	1.85	9	25
Cu	8.96	64	17
w	19.1	185	13
Pb	11.35	207	7

- Planned lumi for PHENIX Run15AuAu 2.8 nb⁻¹ (0.13 nb⁻¹ at 62 GeV)
- Nominal LHC lumi for PbPb 0.5 nb⁻¹

J.P. Lansberg (IPNO, Paris-Sud U.)

イロト イポト イヨト イヨト

A few figures on the (extracted) proton beam

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhoj, UJ Uggerhoj, NIM B 234 (2005) 31

A few figures on the (extracted) proton beam

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhej, UJ Uggerhej, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$

4 D N 4 B N 4 B N 4 B N

A few figures on the (extracted) proton beam

- Beam loss: 10⁹ *p*⁺s⁻¹
- Extracted intensity: $5 imes 10^8~p^+ {
 m s}^{-1}$ (1/2 the beam loss) E. Uggerhoj, UJ Uggerhoj, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5 \text{ km.s}^{-1}/27 \text{ km} \simeq 11 \text{ kHz}$

イロト イポト イラト イラト

A few figures on the (extracted) proton beam

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 imes 10^8~p^+ {
 m s}^{-1}$ (1/2 the beam loss) E. Uggerhoj, UJ Uggerhoj, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5~km.s^{-1}/27~km\simeq 11~kHz$
- Extracted "mini" bunches:
 - $\bullet~$ the crystal sees $2808 \times 11000~s^{-1} \simeq 3.10^7$ bunches s^{-1}
 - one extracts $5.10^8/3.10^7 \simeq 15p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,

no pile-up !

A few figures on the (extracted) proton beam

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhej, UJ Uggerhej, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5~km.s^{-1}/27~km\simeq 11~kHz$
- Extracted "mini" bunches:
 - the crystal sees $2808 \times 11000 \; s^{-1} \simeq 3.10^7$ bunches s^{-1}
 - one extracts $5.10^8/3.10^7 \simeq 15p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,
- Extraction over a 10h fill:
 - $5 \times 10^8 p^+ \times 3600 \text{ s } \text{h}^{-1} \times 10 \text{ h} = 1.8 \times 10^{13} p^+ \text{ fill}^{-1}$
 - This means $1.8 \times 10^{13}/3.2 \times 10^{14} \simeq 5.6\%$ of the p^+ in the beam

These protons are lost anyway !

no pile-up !

A few figures on the (extracted) proton beam

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhei, UJ Uggerhei, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5~km.s^{-1}/27~km\simeq 11~kHz$
- Extracted "mini" bunches:
 - the crystal sees $2808 \times 11000 \; s^{-1} \simeq 3.10^7$ bunches s^{-1}
 - one extracts $5.10^8/3.10^7 \simeq 15p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,
- Extraction over a 10h fill:
 - $5 \times 10^8 p^+ \times 3600 \text{ s} \text{ h}^{-1} \times 10 \text{ h} = 1.8 \times 10^{13} p^+ \text{ fill}^{-1}$
 - This means $1.8 \times 10^{13}/3.2 \times 10^{14} \simeq 5.6\%$ of the p^+ in the beam

These protons are lost anyway !

similar figures for the Pb-beam extraction

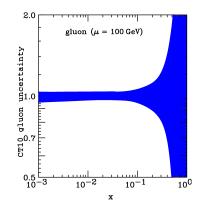
no pile-up !

Part III

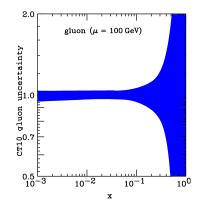
AFTER: flagships measurements

J.P. Lansberg (IPNO, Paris-Sud U.)

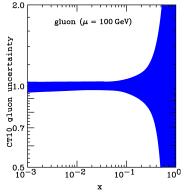
A Fixed Target ExpeRiment at the LHC


 ▶
 ▲
 ≡
 ▶
 ≡
 √
 <</td>

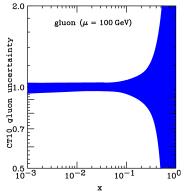
 September 6, 2013
 20 / 40


• Gluon distribution at mid, high and ultra-high *x*_B in the proton

< ロ > < 同 > < 回 > < 回 >


- Gluon distribution at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS

- Gluon distribution at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties



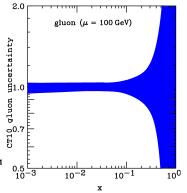
- Gluon distribution at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties
- Accessible thanks gluon sensitive probes,

- Gluon distribution at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties
- Accessible thanks gluon sensitive probes,
 - quarkonia

see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

• Gluon distribution at mid, high and ultra-high x_B in the proton

- Not easily accessible in DIS
- Very large uncertainties

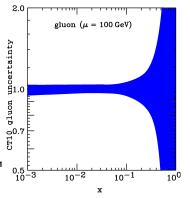

Accessible thanks gluon sensitive probes,

quarkonia

see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

Isolated photon

see the recent survey by D. d'Enterria, R. Rojo, Nucl. Phys. B860 (2012) 311

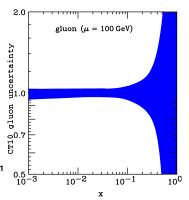


- Gluon distribution at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties
- Accessible thanks gluon sensitive probes,
 - quarkonia

see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

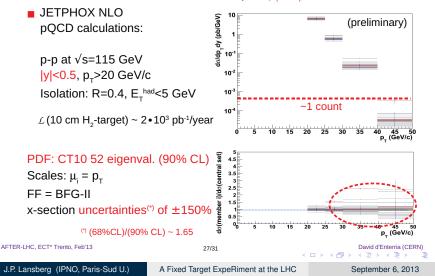
Isolated photon

see the recent survey by D. d'Enterria, R. Rojo, Nucl. Phys. B860 (2012) 311


- Gluon distribution at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties
- Accessible thanks gluon sensitive probes,
 - quarkonia

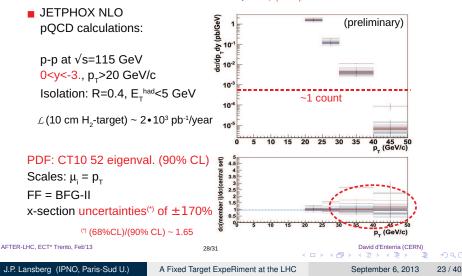
see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

Isolated photon


see the recent survey by D. d'Enterria, R. Rojo, Nucl.Phys. B860 (2012) 311

Multiple probes needed to check factorisation

Isolated-γ in p(7 TeV)-p(rest): √s ~ 115 GeV


■ p-p photon kinematics at fixed-target LHC (central rapidities): To access x > 0.3 one needs isolated- γ at: $p_{\tau} = x_{\tau} \sqrt{s/2} > 20$ GeV/c

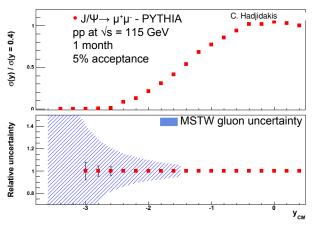
22/40

Isolated-γ in p(7 TeV)-p(rest): √s ~ 115 GeV

■ p-p photon kinematics at fixed-target LHC (backwards rapidities): To access x > 0.3 one needs isolated- γ at: $p_{\tau} = x_{\tau}\sqrt{s/2e^{\gamma}} > 10$ GeV/c

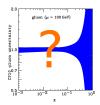
Accessing the large x glue with quarkonia

PYTHIA simulation $\sigma(y) / \sigma(y=0.4)$ statistics for one month 5% acceptance considered

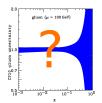

Statistical relative uncertainty Large statistics allow to access very backward region

Gluon uncertainty from MSTWPDF - only for the gluon content of the target - assuming

$$x_g = M_{J/\Psi}/\sqrt{s} e^{-yCM}$$

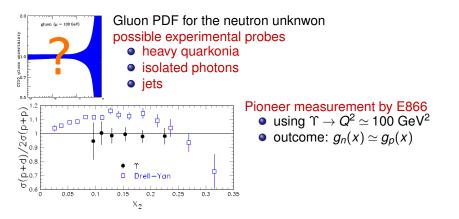

 $\begin{array}{l} J/\Psi \\ y_{\text{CM}} \sim \ 0 \ \rightarrow x_{g} = 0.03 \\ y_{\text{CM}} \sim -3.6 \ \rightarrow x_{g} = 1 \end{array}$

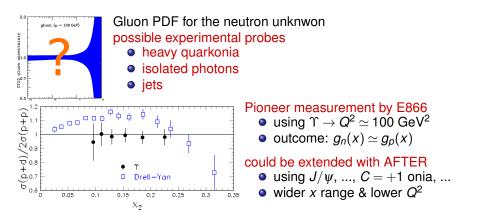
 $\begin{array}{l} \text{Y: larger } x_{g} \text{ for same } y_{\text{CM}} \\ y_{\text{CM}} \sim \ 0 \ \rightarrow x_{g} = 0.08 \\ y_{\text{CM}} \sim -2.4 \ \rightarrow x_{g} = 1 \end{array}$


⇒ Backward measurements allow to access large x gluon pdf

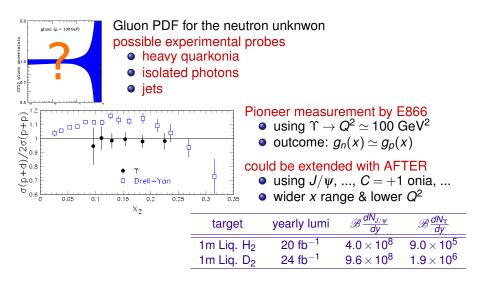
< ロ > < 同 > < 回 > < 回 >

Gluon PDF for the neutron unknwon


< A

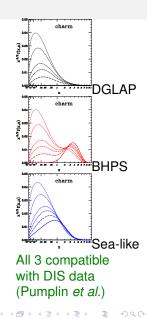


Gluon PDF for the neutron unknwon possible experimental probes heavy guarkonia

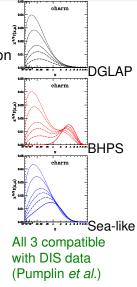

- isolated photons
- jets

3 > 4 3

-

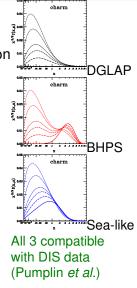


< 61


• Heavy-quark distributions (at high *x_B*)

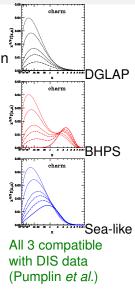
æ

- Heavy-quark distributions (at high x_B)
 - Pin down intrinsic charm, ... at last



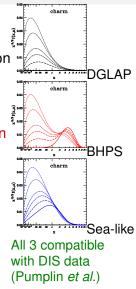
- Heavy-quark distributions (at high *x_B*)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to P_T → 0)

- Heavy-quark distributions (at high x_B)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \rightarrow 0$)


requires

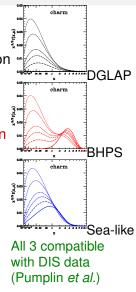
- Heavy-quark distributions (at high *x_B*)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \rightarrow 0$)

requires


• several complementary measurements

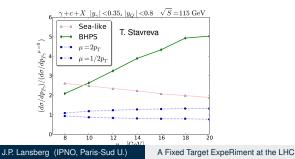
- Heavy-quark distributions (at high x_B)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \rightarrow 0$)

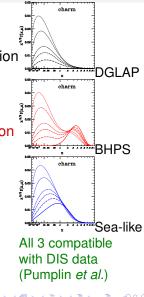
requires


- several complementary measurements
- good coverage in the target-rapidity region

- Heavy-quark distributions (at high *x_B*)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \rightarrow 0$)

requires


- several complementary measurements
- good coverage in the target-rapidity region
- high luminosity to reach large x_B



- Heavy-quark distributions (at high *x_B*)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \rightarrow 0$)

requires

- several complementary measurements
- good coverage in the target-rapidity region
- high luminosity to reach large x_B

September 6, 2013

26/40

• Gluon Sivers effect: correlation between the gluon transverse momentum & the proton spin

- A TE N - A TE N

- Gluon Sivers effect: correlation between
 - the gluon transverse momentum & the proton spin
 - Transverse single spin asymetries

using gluon sensitive probes

- Gluon Sivers effect: correlation between
 - the gluon transverse momentum & the proton spin
 - Transverse single spin asymetries

using gluon sensitive probes

• quarkonia $(J/\psi, \Upsilon, \chi_c, ...)$

F. Yuan, PRD 78 (2008) 014024

• Gluon Sivers effect: correlation between

• Transverse single spin asymetries

using gluon sensitive probes

• quarkonia $(J/\psi, \Upsilon, \chi_c, ...)$

F. Yuan, PRD 78 (2008) 014024

• B & D meson production

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

- Gluon Sivers effect: correlation between
 - the gluon transverse momentum & the proton spin
 - Transverse single spin asymetries

using gluon sensitive probes

< ロ > < 同 > < 回 > < 回 >

• quarkonia $(J/\psi, \Upsilon, \chi_c, ...)$

F. Yuan, PRD 78 (2008) 014024

- B & D meson production
- γ , γ -jet, $\gamma \gamma$ J.W. Qiu, *et al.*, PRL 99 (2007) 212002 J.W. Qiu, *et al.*, PRL 107 (2011) 062001

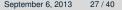
- Gluon Sivers effect: correlation between
 - the gluon transverse momentum & the proton spin
 Transverse single spin asymetries
 - using gluon sensitive probes

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

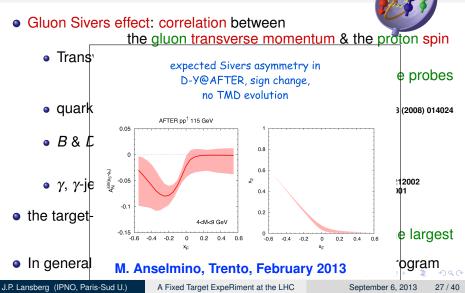
• quarkonia $(J/\psi, \Upsilon, \chi_c, ...)$

F. Yuan, PRD 78 (2008) 014024

- B & D meson production
- γ , γ -jet, $\gamma \gamma$ J.W. Qiu, *et al.*, PRL 99 (2007) 212002 J.W. Qiu, *et al.*, PRL 107 (2011) 062001
- the target-rapidity region corresponds to high x[↑]
 where the k_T-spin correlation is the largest



- Gluon Sivers effect: correlation between
 - the gluon transverse momentum & the proton spin
 Transverse single spin asymetries
 - single spin asymetries using gluon sensitive probes
 - quarkonia $(J/\psi, \Upsilon, \chi_c, ...)$


F. Yuan, PRD 78 (2008) 014024

- B & D meson production
- γ , γ -jet, $\gamma \gamma$ J.W. Qiu, *et al.*, PRL 99 (2007) 212002 J.W. Qiu, *et al.*, PRL 107 (2011) 062001
- the target-rapidity region corresponds to high x[↑] where the k_T-spin correlation is the largest

In general, one can carry out an extensive spin-physics program

- Gluon Sivers effect: correlation between
 - the gluon transverse momentum & the proton spin
 - Transverse single spin asymetries

using gluon sensitive probes

• quarkonia
$$(J/\psi, \Upsilon, \chi_c, ...)$$

F. Yuan, PRD 78 (2008) 014024

PHYSICAL REVIEW D 86, 094007 (2012)

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer*

Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano[†]

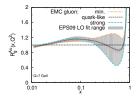
Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy

In general, one can carry out an extensive spin-physics program

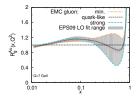
J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

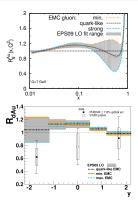
Key studies: large-*x* gluon content of the nucleus

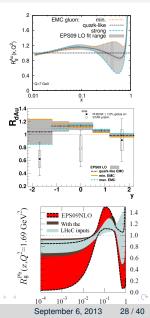

J.P. Lansberg (IPNO, Paris-Sud U.)

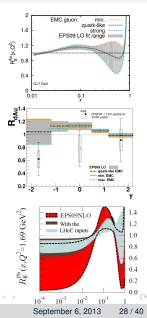
A Fixed Target ExpeRiment at the LHC


September 6, 2013 28 / 40

< ロ > < 同 > < 回 > < 回 >

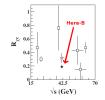

- Large-x gluon nPDF: unknown
- Gluon EMC effect ?


- Large-x gluon nPDF: unknown
- Gluon EMC effect ?


- Large-x gluon nPDF: unknown
- Gluon EMC effect ?
- Strongly limited in terms of statistics after 10 years of RHIC:

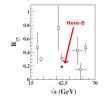
- Large-x gluon nPDF: unknown
- Gluon EMC effect ?
- Hint from ↑ data at RHIC
- Strongly limited in terms of statistics after 10 years of RHIC:
- DIS contribution expected for low x mainly projected contribution of LHeC:

- Large-x gluon nPDF: unknown
- Gluon EMC effect ?
- Hint from ↑ data at RHIC
- Strongly limited in terms of statistics after 10 years of RHIC:
- DIS contribution expected for low x mainly projected contribution of LHeC:
- AFTER allows for extensive studies of gluon sensitive probes in pA
- Unique potential for gluons at x > 0.1

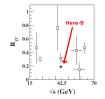

• Very precise *pp* and *pA* baselines (yields, *A* & *y* dependences)

EN 4 EN

- Very precise *pp* and *pA* baselines (yields, *A* & *y* dependences)
- Modern technologies to look for quarkonium excited states

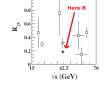

4 D K 4 B K 4 B K 4 B K

- Very precise *pp* and *pA* baselines (yields, *A* & *y* dependences)
- Modern technologies to look for quarkonium excited states


HERA-B PRD 79 (2009) 012001, and ref. therein

- Very precise *pp* and *pA* baselines (yields, *A* & *y* dependences)
- Modern technologies to look for quarkonium excited states
- Energy between SPS and RHIC: QGP should be formed w/o cc̄ recombination

HERA-B PRD 79 (2009) 012001, and ref. therein


- Very precise *pp* and *pA* baselines (yields, *A* & *y* dependences)
- Modern technologies to look for quarkonium excited states
- Energy between SPS and RHIC: QGP should be formed w/o cc̄ recombination
- Open heavy-flavour measurement down to P_T = 0 thanks to the boost.

HERA-B PRD 79 (2009) 012001, and ref. therein

- Very precise *pp* and *pA* baselines (yields, *A* & *y* dependences)
- Modern technologies to look for quarkonium excited states
- Energy between SPS and RHIC:
 QGP should be formed w/o cc̄ recombination

HERA-B PRD 79 (2009) 012001, and ref. therein

 Real hope of being able to look at the quarkonium sequential suppression

< ロ > < 同 > < 回 > < 回 > < 回 >

• For the first time, one would study W/Z production in their threshold region $(m_{W/Z}/\sqrt{s_{AFTER}} \sim 1)$

< ロ > < 同 > < 回 > < 回 >

 For the first time, one would study W/Z production in their threshold region (m_{W/Z}/√s_{AFTER} ~ 1)
 Unique opportunity to measure QCD/threshold effects on W/Z production

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- For the first time, one would study W/Z production in their threshold region $(m_{W/Z}/\sqrt{s_{AFTER}} \sim 1)$
 - Unique opportunity to measure QCD/threshold effects on W/Z production
 - If W'/Z' exist, their production may share similar threshold corrections to that of W/Z, but at LHC energies (m_{W'/Z'}/√s_{LHC} ~ 1 ?)

- For the first time, one would study W/Z production in their threshold region $(m_{W/Z}/\sqrt{s_{AFTER}} \sim 1)$
 - Unique opportunity to measure QCD/threshold effects on *W*/*Z* production
 - If W'/Z' exist, their production may share similar threshold corrections to that of W/Z, but at LHC energies (m_{W'/Z'}/√s_{LHC} ~ 1 ?)
 - Reconstructed rate are most likely between a few dozen to a few thousand / year

(Multiply) heavy baryons:

æ

イロト イヨト イヨト イヨト

(Multiply) heavy baryons:

• $\Lambda_b \rightarrow \Lambda J/\psi$

э

イロン イ理 とく ヨン イヨン

(Multiply) heavy baryons:

•
$$\Lambda_b
ightarrow \Lambda J/\psi$$

• $d\sigma(b)/dy|_{y=0} \gtrsim 100 \text{ nb}$

э

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0}\gtrsim$ 100 nb
 - $\mathcal{N}(b)/\text{year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$

3

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0}\gtrsim$ 100 nb
 - $\mathcal{N}(b)/\text{year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$
 - $\mathscr{B}(b \to \Lambda_b) \times \mathscr{B}(\Lambda_b \to J/\psi\Lambda) = 5.8 \pm 0.8 \times 10^{-5}$ $(\mathscr{B}(J/\psi \to \mu\mu) = 6\%)$

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0}\gtrsim$ 100 nb
 - $\mathcal{N}(b)/\textit{year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$
 - $\mathscr{B}(b \to \Lambda_b) \times \mathscr{B}(\Lambda_b \to J/\psi\Lambda) = 5.8 \pm 0.8 \times 10^{-5}$ $(\mathscr{B}(J/\psi \to \mu\mu) = 6\%)$
 - 15 000 $\Lambda_b \rightarrow J/\psi \Lambda \rightarrow \mu^+ \mu^- \Lambda$ events: enough to perform a polarisation measurement see e.g. LHCb arXiv:1302.5578 [hep-ex]

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0}\gtrsim$ 100 nb
 - $\mathcal{N}(b)/\text{year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$
 - $\mathscr{B}(b \to \Lambda_b) \times \mathscr{B}(\Lambda_b \to J/\psi\Lambda) = 5.8 \pm 0.8 \times 10^{-5}$ $(\mathscr{B}(J/\psi \to \mu\mu) = 6\%)$
 - 15 000 $\Lambda_b \rightarrow J/\psi \Lambda \rightarrow \mu^+ \mu^- \Lambda$ events: enough to perform a polarisation measurement see e.g. LHCb arXiv:1302.5578 [hep-ex]
- discovery potential ? $(\Xi_{cc}, \Omega^{++}(ccc), ...)$

(日)

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0}\gtrsim$ 100 nb
 - $\mathcal{N}(b)/\text{year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$
 - $\mathscr{B}(b \to \Lambda_b) \times \mathscr{B}(\Lambda_b \to J/\psi\Lambda) = 5.8 \pm 0.8 \times 10^{-5}$ $(\mathscr{B}(J/\psi \to \mu\mu) = 6\%)$
 - 15 000 $\Lambda_b \rightarrow J/\psi \Lambda \rightarrow \mu^+ \mu^- \Lambda$ events: enough to perform a polarisation measurement see e.g. LHCb arXiv:1302.5578 [hep-ex]
- discovery potential ? $(\Xi_{cc}, \Omega^{++}(ccc), ...)$
 - Ξ_{cc} , ..., cross sections in the central region are being calculated with the MC generator GENXICC

C.H. Chang, J.X. Wang, X.G. Wu. Comput.Phys.Commun. 177 (2007) 467

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0}\gtrsim$ 100 nb
 - $\mathcal{N}(b)/\text{year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$
 - $\mathscr{B}(b \to \Lambda_b) \times \mathscr{B}(\Lambda_b \to J/\psi\Lambda) = 5.8 \pm 0.8 \times 10^{-5}$ $(\mathscr{B}(J/\psi \to \mu\mu) = 6\%)$
 - 15 000 $\Lambda_b \rightarrow J/\psi \Lambda \rightarrow \mu^+ \mu^- \Lambda$ events: enough to perform a polarisation measurement see e.g. LHCb arXiv:1302.5578 [hep-ex]
- discovery potential ? $(\Xi_{cc}, \Omega^{++}(ccc), ...)$
 - Ξ_{cc} , ..., cross sections in the central region are being calculated with the MC generator GENXICC

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• they should also be calculated for $x_F \rightarrow -1$

where IQ could dominate

C.H. Chang, J.X. Wang, X.G. Wu. Comput.Phys.Commun. 177 (2007) 467

• $\gamma + p$ interaction via ultra-peripheral collisions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $\gamma + p$ interaction via ultra-peripheral collisions
 - $\gamma_{lab}^{beam} \simeq 7000 \ (E_{p} = 7000 \ \text{GeV})$
 - $E_{\gamma,lab}^{max} \simeq \gamma_{lab}^{beam} imes 30$ MeV (1/ $R_{Pb} \simeq 30$ MeV)

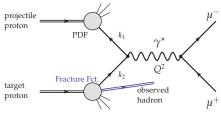
•
$$\sqrt{s_{\gamma p}} = \sqrt{2m_p E_\gamma}$$
 up to 20 GeV

No pile-up

3

- $\gamma + p$ interaction via ultra-peripheral collisions
 - $\gamma_{\text{lab}}^{\text{beam}} \simeq 7000 \ (E_{\rho} = 7000 \ \text{GeV})$
 - $E_{\gamma,lab}^{max} \simeq \gamma_{lab}^{beam} imes 30$ MeV (1/ $R_{Pb} \simeq 30$ MeV)

•
$$\sqrt{s_{\gamma p}} = \sqrt{2 m_p E_\gamma}$$
 up to 20 GeV

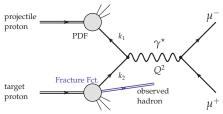

- No pile-up
- Fracture functions

3

- $\gamma + p$ interaction via ultra-peripheral collisions
 - $\gamma_{\text{lab}}^{\text{beam}} \simeq 7000 \ (E_{\rho} = 7000 \ \text{GeV})$
 - $E_{\gamma,\text{lab}}^{\text{max}} \simeq \gamma_{\text{lab}}^{\text{beam}} imes 30 \text{ MeV} (1/R_{\text{Pb}} \simeq 30 \text{ MeV})$

•
$$\sqrt{s_{\gamma p}} = \sqrt{2m_p E_\gamma}$$
 up to 20 GeV

- No pile-up
- Fracture functions
 - via Drell-Yan pair production
 + identified hadron


L. Trentadue, G. Veneziano, PLB 323 (1994) 201 F. Ceccopieri, L. Trentadue, PLB 668 (2008) 319

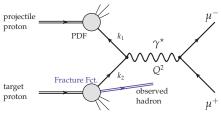
< ロ > < 同 > < 回 > < 回 >

- $\gamma + p$ interaction via ultra-peripheral collisions
 - $\gamma_{\text{lab}}^{\text{beam}} \simeq 7000 \ (E_{\rho} = 7000 \ \text{GeV})$
 - $E_{\gamma,\text{lab}}^{\text{max}} \simeq \gamma_{\text{lab}}^{\text{beam}} imes 30 \text{ MeV} (1/R_{\text{Pb}} \simeq 30 \text{ MeV})$

•
$$\sqrt{s_{\gamma p}} = \sqrt{2m_p E_\gamma}$$
 up to 20 GeV

- No pile-up
- Fracture functions
 - via Drell-Yan pair production
 + identified hadron

L. Trentadue, G. Veneziano, PLB 323 (1994) 201 F. Ceccopieri, L. Trentadue, PLB 668 (2008) 319


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 privileged region for the identified hadron: either the projectile- or target-rapidity region

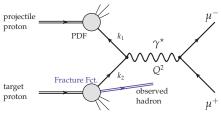
- $\gamma + p$ interaction via ultra-peripheral collisions
 - $\gamma_{\text{lab}}^{\text{beam}} \simeq 7000 \ (E_{\rho} = 7000 \ \text{GeV})$
 - $E_{\gamma,\text{lab}}^{\text{max}} \simeq \gamma_{\text{lab}}^{\text{beam}} imes 30 \text{ MeV} (1/R_{\text{Pb}} \simeq 30 \text{ MeV})$

•
$$\sqrt{s_{\gamma p}} = \sqrt{2m_p E_\gamma}$$
 up to 20 GeV

- No pile-up
- Fracture functions
 - via Drell-Yan pair production
 + identified hadron

L. Trentadue, G. Veneziano, PLB 323 (1994) 201 F. Ceccopieri, L. Trentadue, PLB 668 (2008) 319

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >


- privileged region for the identified hadron: either the projectile- or target-rapidity region
- the fixed-target mode is ideal for such studies

Further key studies ?

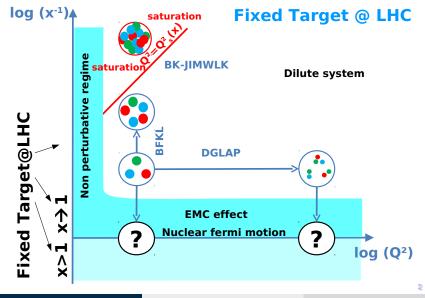
- $\gamma + p$ interaction via ultra-peripheral collisions
 - $\gamma_{\text{lab}}^{\text{beam}} \simeq 7000 \ (E_{\rho} = 7000 \ \text{GeV})$
 - $E_{\gamma,\text{lab}}^{\text{max}} \simeq \gamma_{\text{lab}}^{\text{beam}} imes 30 \text{ MeV} (1/R_{\text{Pb}} \simeq 30 \text{ MeV})$

•
$$\sqrt{s_{\gamma p}} = \sqrt{2m_p E_\gamma}$$
 up to 20 GeV

- No pile-up
- Fracture functions
 - via Drell-Yan pair production
 + identified hadron

L. Trentadue, G. Veneziano, PLB 323 (1994) 201 F. Ceccopieri, L. Trentadue, PLB 668 (2008) 319

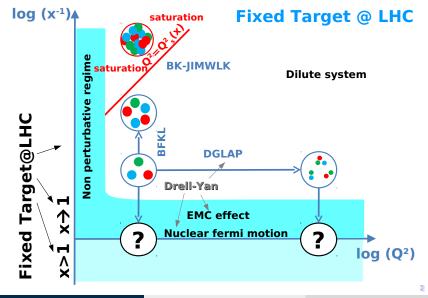
• privileged region for the identified hadron: either the projectile- or


target-rapidity region

- the fixed-target mode is ideal for such studies
- good prospects for gluon fracture-function studies !

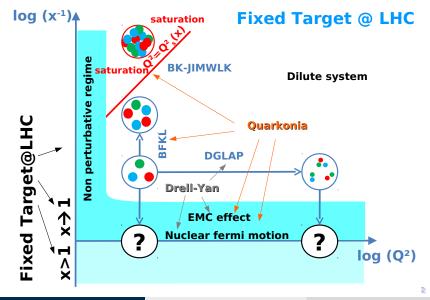
J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

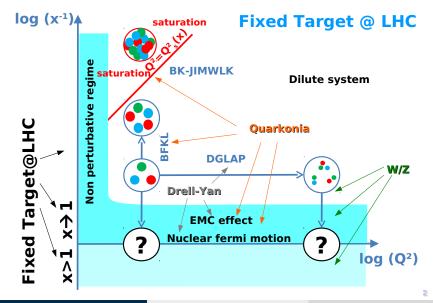

Overall

J.P. Lansberg (IPNO, Paris-Sud U.)

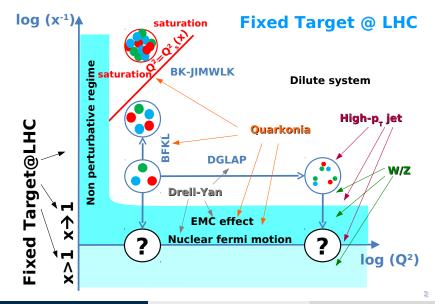
A Fixed Target ExpeRiment at the LHC


Overall

J.P. Lansberg (IPNO, Paris-Sud U.)


A Fixed Target ExpeRiment at the LHC

Overall


A Fixed Target ExpeRiment at the LHC

Overall

A Fixed Target ExpeRiment at the LHC

Overall

A Fixed Target ExpeRiment at the LHC

More details in

Physics Reports 522 (2013) 239-255

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky^a, F. Fleuret^b, C. Hadjidakis^c, J.P. Lansberg^{c,*}

* SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA ^b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France ^c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents

1.	Intro	duction	6			
2.	Key n	numbers and features				
3.	Nucleon partonic structure					
	3.1.	Drell-Yan				
	3.2.	Gluons in the proton at large x				
		3.2.1. Quarkonia				
		3.2.2. Jets	7			
		3.2.3. Direct/isolated photons				
	3.3.	Gluons in the deuteron and in the neutron	8.			
	3.4.	Charm and bottom in the proton				
		3.4.1. Open-charm production				
		3.4.2. $J/\psi + D$ meson production				
		3.4.3. Heavy-quark plus photon production				
	Spin physics					
	4.1.	Transverse SSA and DY				
	4.2.	Quarkonium and heavy-quark transverse SSA				
	4.3.	Transverse SSA and photon				
	4.4.	Spin asymmetries with a final state polarization				
5.	Nuclear matter					
	5.1.	Quark nPDF: Drell-Yan in pA and Pbp				
	5.2.	Gluon nPDF				
		5.2.1. Isolated photons and photon-jet correlations				
		5.2.2. Precision quarkonium and heavy-flavour studies				
	5.3.	Color filtering, energy loss, Sudakov suppression and hadron brea	k-u			

2.	Precision quarkonium	h and heavy-	flavour studies
r filt	ering, energy loss, Suc	lakov suppr	ession and hadron break-up in the nucleus

5.	Deconfinement in heavy-ion collisions				
	6.1.	Quarkonium studies			
	6.2.	let quenching			
	6.3.	Direct photon			
	6.4.	Deconfinement and the target rest frame			
	6.5.	Nuclear-matter baseline			
7.	W and Z boson production in pp, pd and pA collisions				
	7.1.	First measurements in pA			
	7.2.	W/Z production in pp and pd			
8.	Exclusive, semi-exclusive and backward reactions				
	8.1.	Ultra-peripheral collisions			
	8.2.	Hard diffractive reactions			
	8.3.	Heavy-hadron (diffractive) production at $x_F \rightarrow -1$.			
	8.4.	Very backward physics			
	8.5.	Direct hadron production			
9.	Further potentialities of a high-energy fixed-target set-up.				
	9.1.	D and B physics			
	9.2.	Secondary beams			
	9.3.	Forward studies in relation with cosmic shower			
0.	Conclusions				
	Acknowledgments				
	Refere	nces			

A Fixed Target ExpeRiment at the LHC

しょういい 国家 不良家

Part IV

Back to the future ...

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

September 6, 2013 35 / 40

Nuclear Instruments and Methods in Physics Research A 333 (1993) 125-135 North-Holland NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SectionA

LHB, a fixed target experiment at LHC to measure CP violation in B mesons

Flavio Costantini

University of Pisa and INFN, Italy

A fixed target experiment at LHC to measure CP violation in B mesons is presented. A description of the proposed apparatus is given together with its sensitivity on the CP violation asymmetry measurement for the two benchmark decay channels $B^0 \rightarrow J/\psi + K_s^0$, $B^0 \rightarrow \pi^+ \pi^-$. The possibility of obtaining an extracted LHC beam hinges on channeling in a bent silicon crystal. Recent results on beam extraction efficiencies measured at CERN SPS based on this technique are presented.

1. Introduction

•••

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻³s⁻¹ luminosity [5].

イロト イヨト イヨト イヨト

1. Introduction

...

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10³⁴ cm⁻²s⁻¹ luminosity [5].

¹⁰ $B\overline{B}$ pairs per year

• *B*-factories: 1 ab⁻¹ means 10⁹*B* \bar{B} pairs

1. Introduction

...

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted 10^{10} beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻²s⁻¹ luminosity [5].

- *B*-factories: 1 ab⁻¹ means 10⁹ *B* B pairs
- For LHCb, typically 1 fb⁻¹ means $\simeq 2 \times 10^{11} B\overline{B}$ pairs at 14 TeV

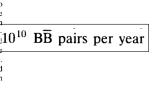
BB pairs per year

< ロ > < 同 > < 回 > < 回 >

1. Introduction

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted 10^{10} beam intensity of about 10⁸ protons/s allowing the production of as many as 1010 BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10³⁴ cm⁻²s⁻¹ luminosity [5].

- B-factories: 1 ab⁻¹ means 10⁹ BB pairs
- For LHCb, typically 1 fb⁻¹ means $\simeq 2 \times 10^{11} B\overline{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.

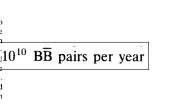

BB pairs per year

< ロ > < 同 > < 回 > < 回 >

1. Introduction

...

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted 10^{10} beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻²s⁻¹ luminosity [5].



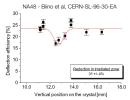
- B-factories: 1 ab⁻¹ means 10⁹ BB pairs
- For LHCb, typically 1 fb⁻¹ means $\simeq 2 \times 10^{11} B\overline{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.
- $\bullet\,$ Nowadays, degradation is known to be $\simeq 6\%$ per $10^{20}\,$ particles/cm^2
- 10²⁰ particles/cm² : one year of operation for realistic conditions

1. Introduction

•••

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted 10^{10} beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻²s⁻¹ luminosity [5].

- B-factories: 1 ab⁻¹ means 10⁹ BB pairs
- For LHCb, typically 1 fb⁻¹ means $\simeq 2 \times 10^{11} B\overline{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.
- $\bullet\,$ Nowadays, degradation is known to be $\simeq 6\%$ per $10^{20}\,$ particles/cm^2
- 10²⁰ particles/cm² : one year of operation for realistic conditions
- After a year, one simply moves the crystal by less than one mm ...


・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Simone Montesano - February 11th, 2013 - Physics at AFTER using the LHC beams

Crystal resistance to irradiation

- IHEP U-70 (Biryukov et al, NIMB 234, 23-30):
 - 70 GeV protons, 50 ms spills of 10¹⁴ protons every 9.6 s. several minutes irradiation
 - equivalent to 2 nominal LHC bunches for 500 turns every 10 s
 - 5 mm silicon crystal, channeling efficiency unchanged
- SPS North Area NA48 (Biino et al, CERN-SL-96-30-EA):
 - 450 GeV protons, 2.4 s spill of 5 x 10¹² protons every 14.4 s, one year irradiation, 2.4 x 1020 protons/cm2 in total,
 - · equivalent to several year of operation for a primary collimator in LHC
 - 10 x 50 x 0.9 mm³ silicon crystal, 0.8 x 0.3 mm² area irradiated, channeling efficiency reduced by 30%.
- HRMT16-UA9CRY (HiRadMat facility, November 2012):
 - 440 GeV protons, up to 288 bunches in 7.2 us, 1.1 x 10¹¹ protons per bunch (3 x 10¹³ protons in total)
 - · energy deposition comparable to an asynchronous beam dump in LHC
 - · 3 mm long silicon crystal, no damage to the crystal after accurate visual inspection, more tests planned to assess possible crystal lattice damage
 - accurate FLUKA simulation of energy deposition and residual dose

S. Montesano (CERN - EN/STI) @ ECT* Trento workshop. Physics at AFTER using the LHC beams (Feb. 2013)

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

Part V

Conclusion and outlooks

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

September 6, 2013 38 / 40

э

• Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments

A B F A B F

 Both p and Pb LHC beams can be extracted without disturbing the other experiments • Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec

J.P. Lansberg (IPNO, Paris-Sud U.)

E N 4 E N

- Both p and Pb LHC beams can be extracted without disturbing the other experiments
 Extraction a few per cent of the beam of Ex 10⁸ pretons per cent
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s_{NN}} = 72 \text{ GeV}$

E N 4 E N

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s_{NN}} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of

BA 4 BA

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s_{NN}} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of
 - high luminosity (reach in y, P_T , small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s_{NN}} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of
 - high luminosity (reach in y, P_T , small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s_{NN}} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of
 - high luminosity (reach in y, P_T , small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction
- A wealth of possible measurements:
 DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams)

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s_{NN}} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of
 - high luminosity (reach in y, P_T , small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction
- A wealth of possible measurements:
 DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams)
- Planned LHC long shutdown (< 2020 ?) could be used to install the extraction system

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s_{NN}} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of
 - high luminosity (reach in y, P_T , small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction
- A wealth of possible measurements:
 DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams)
- Planned LHC long shutdown (< 2020 ?) could be used to install the extraction system
- Very good complementarity with electron-ion programs

• First physics paper Physics Reports 522 (2013) 239

J.P. Lansberg (IPNO, Paris-Sud U.)

э

イロト イヨト イヨト イヨト

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- NEW: Workshop in Les Houches on 12-17 January 2014

http://indico.in2p3.fr/event/AFTER@LesHouches

and 3-day workshop at Orsay

with LUA9 on November 12-14, 2013

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

http://indico.in2p3.fr/event/LUA9-AFTER-1113

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- NEW: Workshop in Les Houches on 12-17 January 2014 http://indico.in2p3.fr/event/AFTER@LesHouches and 3-day workshop at Orsay

with LUA9 on November 12-14, 2013

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

http://indico.in2p3.fr/event/LUA9-AFTER-1113

• We are looking for more partners to

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- NEW: Workshop in Les Houches on 12-17 January 2014 http://indico.in2p3.fr/event/AFTER@LesHouches

and 3-day workshop at Orsay

with LUA9 on November 12-14, 2013

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

http://indico.in2p3.fr/event/LUA9-AFTER-1113

- We are looking for more partners to
 - do first simulations (we are getting ready for fast simulations)

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- NEW: Workshop in Les Houches on 12-17 January 2014

http://indico.in2p3.fr/event/AFTER@LesHouches

and 3-day workshop at Orsay

with LUA9 on November 12-14, 2013

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

http://indico.in2p3.fr/event/LUA9-AFTER-1113

- We are looking for more partners to
 - do first simulations (we are getting ready for fast simulations)
 - think about possible designs

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- NEW: Workshop in Les Houches on 12-17 January 2014

http://indico.in2p3.fr/event/AFTER@LesHouches

and 3-day workshop at Orsay

with LUA9 on November 12-14, 2013

http://indico.in2p3.fr/event/LUA9-AFTER-1113

- We are looking for more partners to
 - do first simulations (we are getting ready for fast simulations)
 - think about possible designs
 - think about the optimal detector technologies
 - enlarge the physics case (cosmic rays, flavour physics, ...)

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- NEW: Workshop in Les Houches on 12-17 January 2014

http://indico.in2p3.fr/event/AFTER@LesHouches

and 3-day workshop at Orsay

with LUA9 on November 12-14, 2013

http://indico.in2p3.fr/event/LUA9-AFTER-1113

- We are looking for more partners to
 - do first simulations (we are getting ready for fast simulations)
 - think about possible designs
 - think about the optimal detector technologies
 - enlarge the physics case (cosmic rays, flavour physics, ...)
- Theorist colleagues are encouraged to think about additional ideas of physics

already 2 papers on the physics at AFTER: T. Liu, B.Q. Ma, EPJC (2012) 72:2037 D. Boer, C. Pisano, Phys.Rev. D86 (2012) 094007

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- NEW: Workshop in Les Houches on 12-17 January 2014

http://indico.in2p3.fr/event/AFTER@LesHouches

and 3-day workshop at Orsay

with LUA9 on November 12-14, 2013

http://indico.in2p3.fr/event/LUA9-AFTER-1113

- We are looking for more partners to
 - do first simulations (we are getting ready for fast simulations)
 - think about possible designs
 - think about the optimal detector technologies
 - enlarge the physics case (cosmic rays, flavour physics, ...)
- Theorist colleagues are encouraged to think about additional ideas of physics

already 2 papers on the physics at AFTER: T. Liu, B.Q. Ma, EPJC (2012) 72:2037 D. Boer, C. Pisano, Phys.Rev. D86 (2012) 094007

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Do not hesitate to contact us

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- NEW: Workshop in Les Houches on 12-17 January 2014

http://indico.in2p3.fr/event/AFTER@LesHouches

and 3-day workshop at Orsay

with LUA9 on November 12-14, 2013

http://indico.in2p3.fr/event/LUA9-AFTER-1113

- We are looking for more partners to
 - do first simulations (we are getting ready for fast simulations)
 - think about possible designs
 - think about the optimal detector technologies
 - enlarge the physics case (cosmic rays, flavour physics, ...)
- Theorist colleagues are encouraged to think about additional ideas of physics

already 2 papers on the physics at AFTER: T. Liu, B.Q. Ma, EPJC (2012) 72:2037 D. Boer, C. Pisano, Phys.Rev. D86 (2012) 094007

September 6, 2013

- Do not hesitate to contact us
- Webpage: http://after.in2p3.fr

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

40/40

Part VI

Backup slides

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

September 6, 2013 41 / 40

2

イロト イヨト イヨト イヨト

Beam extraction

• Beam extraction @ LHC

... there are extremely promising possibilities to extract 7 TeV protons from the circulating beam by means of a bent crystal.

... The idea is to put a bent, single crystal of either Si or Ge (W would perform slightly better but needs substantial improvements in crystal quality) at a distance of $\simeq 7\sigma$ to the beam where it can intercept and deflect part of the beam halo by an angle similar to the one the foreseen dump kicking system will apply to the circulating beam.

... ions with the same momentum per charge as protons are deflected in a crystal with similar efficiencies

If the crystal is positioned at the kicking section, the whole dump system can be used for slow extraction of parts of the beam halo, the particles that are anyway lost subsequently at collimators.

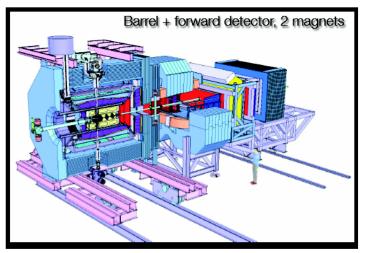
Backup slides

(x,Q²) map of AFTER isolated-γ

[D.d'E & J.Rojo, NPB 860 (2012) 311]

P-P

p-p kinematics at fixed-target LHC:


VEW !

To access x > 0.3 one needs isolated- γ with: $p_T = x_T \sqrt{s/2} > 10-20$ GeV/c

I.D. D'Enterria Physics at AFTER using CHC beams FCT* Trento Feb 2013 J.P. Lansberg (IPNO, Paris-Sud U.) A Fixed Target ExpeRiment at the LHC September 6 Backup slides

<u>AFTER@LHC</u> Detector : could be inspired by PANDA

EmCal could be based on ultragranular CALICE, developed for ILC

Interpolating the world data set: •

Target	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A£βσ _Ψ	Ν(Υ) yr -1 =Α <i>L</i> ℬσ _r
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10 ⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³

H N

Interpolating the world data set:

Target	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A <i>L</i> ℬσ _Ψ	N(Υ) yr ⁻¹ =A <i>L</i> ℬσ _r
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10 ⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³

• 1000 times higher than at RHIC;comparable to ALICE/LHCb at the LHC

Interpolating the world data set:

Target	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A£βσ _Ψ	N(Υ) yr ⁻¹ =A <i>L</i> ℬσ _r
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³

- 1000 times higher than at RHIC;comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of rapidity about 0

Interpolating the world data set:

Target	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A£βσ _Ψ	N(Υ) yr ⁻¹ =A <i>L</i> ℬσ _r
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³

- 1000 times higher than at RHIC;comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of rapidity about 0
- Unique access in the backward region

Interpolating the world data set:

Target	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A£βσ _Ψ	N(Υ) yr ⁻¹ =A <i>L</i> ℬσ _r
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³

- 1000 times higher than at RHIC;comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of rapidity about 0
- Unique access in the backward region
- Probe of the (very) large x in the target

Many hopes were put in quarkonium studies to extract gluon PDF

< ロ > < 同 > < 回 > < 回 >

- Many hopes were put in quarkonium studies to extract gluon PDF
 - in photo/lepto production (DIS)
 - but also pp collisions in gg-fusion process
 - mainly because of the presence of a natural "hard" scale: m_Q
 - and the good detectability of a dimuon pair

< 口 > < 同 > < 回 > < 回 > < 回 > <

- Many hopes were put in quarkonium studies to extract gluon PDF
 - in photo/lepto production (DIS)
 - but also pp collisions in gg-fusion process
 - mainly because of the presence of a natural "hard" scale: m_Q
 - and the good detectability of a dimuon pair

PHYSICAL REVIEW D

VOLUME 37, NUMBER 5

1 MARCH 1988

Structure-function analysis and ψ , jet, W, and Z production: Determining the gluon distribution

> A. D. Martin Department of Physics, University of Durham, Durham, England

R. G. Roberts Rutherford Appleton Laboratory, Didcot, Oxon, England

W. J. Stirling

Department of Physics, University of Durham, Durham, England (Received 27 July 1987)

We perform a next-to-leading-order structure-function analysis of deep-inelastic μN and νN scattering data and find acceptable fits for a range of input gluon distributions. We show three equally acceptable sets of parton distributions which correspond to gluon distributions which are (1) "soft," (2)"-hard(") and (3) which behave as $\sigma(X) - 1/\sqrt{x}$ at small x. J/ψ and promph hoton hadroproduction data are used to discriminate between the three sets. Set 1, with the "soft"-gluon ditribution, is favored. M', Z_{in} and ig production data from the CERN collider are well described but do not distinguish between the sets of structure functions. The precision of the predictions for σ_{μ} directly measured at DESY HERA.

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

September 6, 2013

46/40

< ロ > < 同 > < 回 > < 回 >

- Many hopes were put in quarkonium studies to extract gluon PDF
 - in photo/lepto production (DIS)
 - but also pp collisions in gg-fusion process
 - mainly because of the presence of a natural "hard" scale: m_Q
 - and the good detectability of a dimuon pair

PHYSICAL REVIEW D

VOLUME 37, NUMBER 5

1 MARCH 1988

Structure-function analysis and ψ , jet, W, and Z production: Determining the gluon distribution

> A. D. Martin Department of Physics, University of Durham, Durham, England

R. G. Roberts Rutherford Appleton Laboratory, Didcot, Oxon, England

W. J. Stirling Department of Physics, University of Durham, Durham, England (Received 27 July 1987)

We perform a next-to-leading-order structure-function analysis of deep-inelastic μN and νN scattering data and find acceptable fits for a range of input gloon distributions. We show three equally acceptable sets of parton distributions which correspond to gluon distributions which are (1) $\nu s(r)$, (2) $\mu range (2)$ and (3) which behave as $\sigma(X) - 1/\sqrt{x}$ at small x. J_{ν}^{A} and prompt photon hadroproduction data are used to discriminate between the three sets. Set 1, with the "soft"-gluon distribution, is favored. W_{ν}^{Z} and give production data from the CERN collider are well described but do not distinguish between the sets of structure functions. The precision of the predictions for σ_{μ} directly measured at DESY HERA.

• Production $puzzle \rightarrow quarkonium$ not used anymore in global fits

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

September 6, 2013

46/40

< ロ > < 同 > < 回 > < 回 >

- Many hopes were put in quarkonium studies to extract gluon PDF
 - in photo/lepto production (DIS)
 - but also pp collisions in gg-fusion process
 - mainly because of the presence of a natural "hard" scale: m_Q
 - and the good detectability of a dimuon pair

PHYSICAL REVIEW D

VOLUME 37, NUMBER 5

1 MARCH 1988

Structure-function analysis and ψ , jet, W, and Z production: Determining the gluon distribution

> A. D. Martin Department of Physics, University of Durham, Durham, England

R. G. Roberts Rutherford Appleton Laboratory, Didcot, Oxon, England

W. J. Stirling Department of Physics, University of Durham, Durham, England (Received 27 July 1987)

We perform a next-to-leading-order structure-function analysis of deep-inelastic μN and νN scattering data and find acceptable fits for a range of input gluon distributions. We show three equally acceptable sets of parton distributions which correspond to gluon distributions which are (1) $\nu s(h, '2)$ $h^2 dn' and (3) which behaves as <math>\sigma(X) - 1/\sqrt{x}$ at small x. J/ϕ and promph hoton hadroproduction data are used to discriminate between the three sets. Set 1, with the "soft"-gluon distribution, is favored. W, Z, and gir production data from the CERN collider are well described but do not distinguish between the sets of structure functions. The precision of the predictions for σu directly measured to Dilder measurements to yield information on the number of light neutrinos and the mass of the top quark. Finally we discuss how the gluon distribution at very small x may be directly measured at DESY HERA.

Production puzzle → quarkonium not used anymore in global fits
With systematic studies, one would restore its status as gluon probe

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

September 6, 2013 46 / 40

Target	Α	∫£ (fb-1.yr-1)	N(J/Ψ) yr-1 = A£βσ _Ψ	N(Υ) yr-1 =A <i>L</i> ℬσ _r
1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵
1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶
1cm W	185	0.31	1.1 10 ⁹	2.3 10 ⁶
1cm Pb	207	0.16	6.7 10 ⁸	1.3 10 ⁶
LHC pPb 8.8 TeV	207	10-4	1.0 107	7.5 10 ⁴
RHIC dAu 200GeV	198	1.5 10-4	2.4 10 ⁶	5.9 10 ³
RHIC dAu 62GeV	198	3.8 10 ⁻⁶	1.2 104	18

• In principle, one can get 300 times more J/ψ –not counting the likely wider *y* coverage– than at RHIC, allowing for

Target	Α	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr-1 = A£βσ _Ψ	N(Υ) yr ⁻¹ =A£ℬσ _Υ
1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵
1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶
1cm W	185	0.31	1.1 10°	2.3 10 ⁶
1cm Pb	207	0.16	6.7 10 ⁸	1.3 10 ⁶
LHC pPb 8.8 TeV	207	10-4	1.0 107	7.5 10 ⁴
RHIC dAu 200GeV	198	1.5 10-4	2.4 10 ⁶	5.9 10 ³
RHIC dAu 62GeV	198	3.8 10 -6	1.2 104	18

- In principle, one can get 300 times more J/ψ –not counting the likely wider *y* coverage– than at RHIC, allowing for
 - χ_c measurement in *pA* via $J/\psi + \gamma$ (extending Hera-B studies)

Target	Α	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr-1 = A£βσ _Ψ	N(Υ) yr ⁻¹ =A£ℬσ _Υ
1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵
1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶
1cm W	185	0.31	1.1 10°	2.3 10 ⁶
1cm Pb	207	0.16	6.7 10 ⁸	1.3 10 ⁶
LHC pPb 8.8 TeV	207	10-4	1.0 107	7.5 10 ⁴
RHIC dAu 200GeV	198	1.5 10-4	2.4 106	5.9 10 ³
RHIC dAu 62GeV	198	3.8 10 -6	1.2 104	18

- In principle, one can get 300 times more J/ψ –not counting the likely wider *y* coverage– than at RHIC, allowing for
 - χ_c measurement in *pA* via $J/\psi + \gamma$ (extending Hera-B studies)
 - Polarisation measurement as the centrality, y or P_T

Target	Α	∫£ (fb-1.yr-1)	N(J/Ψ) yr-1 = A£βσ _Ψ	N(Υ) yr-1 =A <i>L</i> ℬσ _r
1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵
1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶
1cm W	185	0.31	1.1 10 ⁹	2.3 10 ⁶
1cm Pb	207	0.16	6.7 10 ⁸	1.3 10 ⁶
LHC pPb 8.8 TeV	207	10-4	1.0 107	7.5 10 ⁴
RHIC dAu 200GeV	198	1.5 10-4	2.4 10 ⁶	5.9 10 ³
RHIC dAu 62GeV	198	3.8 10 ⁻⁶	1.2 104	18

- In principle, one can get 300 times more J/ψ –not counting the likely wider *y* coverage– than at RHIC, allowing for
 - χ_c measurement in *pA* via $J/\psi + \gamma$ (extending Hera-B studies)
 - Polarisation measurement as the centrality, y or P_T
 - Ratio ψ' over direct J/ψ measurement in pA

Target	Α	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr-1 = A£βσ _Ψ	N(Υ) yr-1 =A£ℬσ _r
1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵
1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶
1cm W	185	0.31	1.1 10 °	2.3 10 ⁶
1cm Pb	207	0.16	6.7 10 ⁸	1.3 10 ⁶
LHC pPb 8.8 TeV	207	10-4	1.0 107	7.5 10 ⁴
RHIC dAu 200GeV	198	1.5 10-4	2.4 10 ⁶	5.9 10 ³
RHIC dAu 62GeV	198	3.8 10 ⁻⁶	1.2 104	18

- In principle, one can get 300 times more J/ψ –not counting the likely wider *y* coverage– than at RHIC, allowing for
 - χ_c measurement in *pA* via $J/\psi + \gamma$ (extending Hera-B studies)
 - Polarisation measurement as the centrality, y or P_T
 - Ratio ψ' over direct J/ψ measurement in pA
 - not to mention ratio with open charm, Drell-Yan, etc ...

• The target versatility of a fixed-target experiment is undisputable

3

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects
- Strong need for cross checks from various measurements

4 D K 4 B K 4 B K 4 B K

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects
- Strong need for cross checks from various measurements
- The backward kinematics is very useful for large-*x_{target}* studies

イロト イポト イラト イラト

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects
- Strong need for cross checks from various measurements
- The backward kinematics is very useful for large-*x_{target}* studies
 - What is the amount of Intrinsic charm ? Is it color filtered ?

イロト イポト イラト イラト

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects
- Strong need for cross checks from various measurements
- The backward kinematics is very useful for large-*x_{target}* studies
 - What is the amount of Intrinsic charm ? Is it color filtered ?
 - Is there an EMC effect for gluon ? (reminder: EMC region 0.3 < x < 0.7)

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects
- Strong need for cross checks from various measurements
- The backward kinematics is very useful for large-*x_{target}* studies
 - What is the amount of Intrinsic charm ? Is it color filtered ?
 - Is there an EMC effect for gluon ? (reminder: EMC region 0.3 < x < 0.7)
- One should be careful with factorization breaking effects:

This calls for multiple measurements to (in)validate factorization

3

• Luminosities and yields with the extracted 2.76 TeV Pb beam

Target	A.B	∫£ (nb ^{.1} .yr ^{.1})	N(J/Ψ) yr-1 = AB£ℬσ _Ψ	N(Υ) yr-1 =AB <i>L</i> ℬσ _Υ	
1 m Liq. H ₂	207.1	800	3.4 10 ⁶	6.9 10 ³	
1cm Be	207.9	25	9.1 10 ⁵	1.9 10 ³	
1cm Cu	207.64	17	4.3 10 ⁶	0.9 10 ³	
1cm W	207.185	13	9.7 10 ⁶	1.9 10 ⁴	L
1cm Pb	207.207	7	5.7 10 ⁶	1.1 10 ⁴	
LHC PbPb 5.5 TeV	207.207	0.5	7.3 10 ⁶	3.6 10 ⁴	
RHIC AuAu 200GeV	198.198	2.8	4.4 10 ⁶	1.1 10 ⁴	
RHIC AuAu 62GeV	198.198	0.13	4.0 10 ⁴	61	

 $(\sqrt{s_{NN}} = 72 \text{ GeV})$

12 N A 12

• Luminosities and yields with the extracted 2.76 TeV Pb beam

	$(\sqrt{s_{NN}} =$	72 Gev)
N(J/Ψ) yr⁻¹	N(Ƴ) yr⁻¹	
$= AB \mathcal{LB} \sigma_{\Psi}$	=ΑΒ <i>L</i> ℬσ _Υ	

Target	A.B	∫£ (nb ^{.1} .yr ^{.1})	N(J/Ψ) yr-1 = AB£ℬσ _Ψ	N(Υ) yr ⁻¹ =AB£ℬσ _r
1 m Liq. H ₂	207.1	800	3.4 10 ⁶	6.9 10 ³
1cm Be	207.9	25	9.1 10 ⁵	1.9 10 ³
1cm Cu	207.64	17	4.3 10 ⁶	0.9 10 ³
1cm W	207.185	13	9.7 10 ⁶	1.9 10 ⁴
1cm Pb	207.207	7	5.7 10 ⁶	1.1 10 ⁴
LHC PbPb 5.5 TeV	207.207	0.5	7.3 10 ⁶	3.6 10 ⁴
RHIC AuAu 200GeV	198.198	2.8	4.4 10 ⁶	1.1 10 ⁴
RHIC AuAu 62GeV	198.198	0.13	4.0 10 ⁴	61

 Yields similar to those of RHIC at 200 GeV, 100 times those of RHIC at 62 GeV

• Luminosities and yields with the extracted 2.76 TeV Pb beam

-				$(\sqrt{s_{NN}} =$
Target	А.В	∫£ (nb ^{.1} .yr ^{.1})	N(J/Ψ) yr-1 = AB£ℬσ _Ψ	N(Υ) yr ⁻¹ =AB£ℬσ _Υ
1 m Liq. H ₂	207.1	800	3.4 106	6.9 10 ³
1cm Be	207.9	25	9.1 10 ⁵	1.9 10 ³
1cm Cu	207.64	17	4.3 10 ⁶	0.9 10 ³
1cm W	207.185	13	9.7 10 ⁶	1.9 10 ⁴
1cm Pb	207.207	7	5.7 10 ⁶	1.1 10 ⁴
LHC PbPb 5.5 TeV	207.207	0.5	7.3 10 ⁶	3.6 10 ⁴
RHIC AuAu 200GeV	198.198	2.8	4.4 10 ⁶	1.1 10 ⁴
RHIC AuAu 62GeV	198.198	0.13	4.0 10 ⁴	61

- Yields similar to those of RHIC at 200 GeV, 100 times those of RHIC at 62 GeV
- Also very competitive compared to the LHC.

• Luminosities and yields with the extracted 2.76 TeV Pb beam

				$(\mathbf{v} = \mathbf{v})\mathbf{v}$
Target	A.B	∫£ (nb-¹.yr-¹)	N(J/Ψ) yr-1 = AB£ℬσ _Ψ	N(Υ) yr-1 =AB <i>L</i> ℬσ _Υ
1 m Liq. H ₂	207.1	800	3.4 10 ⁶	6.9 10 ³
1cm Be	207.9	25	9.1 10 ⁵	1.9 10 ³
1cm Cu	207.64	17	4.3 10 ⁶	0.9 10 ³
1cm W	207.185	13	9.7 10 ⁶	1.9 10 ⁴
1cm Pb	207.207	7	5.7 10 ⁶	1.1 10 ⁴
LHC PbPb 5.5 TeV	207.207	0.5	7.3 10 ⁶	3.6 10 ⁴
RHIC AuAu 200GeV	198.198	2.8	4.4 10 ⁶	1.1 10 ⁴
RHIC AuAu 62GeV	198.198	0.13	4.0 10 ⁴	61

 $(\sqrt{s_{NN}} = 72 \text{ GeV})$

- Yields similar to those of RHIC at 200 GeV, 100 times those of RHIC at 62 GeV
- Also very competitive compared to the LHC.

The same picture also holds for open heavy flavour

Observation of J/ψ sequential suppression seems to be hindered by • the Cold Nuclear Matter effects: non trivial and

... not well understood

Observation of J/ψ sequential suppression seems to be hindered by

• the Cold Nuclear Matter effects: non trivial and

... not well understood

- the difficulty to observe directly the excited states which would melt before the ground states
 - χ_c never studied in AA collisions
 - ψ(2S) not yet studied in AA collisions at RHIC

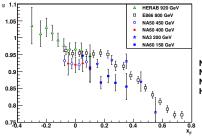
Observation of J/ψ sequential suppression seems to be hindered by

• the Cold Nuclear Matter effects: non trivial and

... not well understood

- the difficulty to observe directly the excited states which would melt before the ground states
 - χ_c never studied in AA collisions
 - ψ(2S) not yet studied in AA collisions at RHIC
- the possibilities for *cc* recombination
 - Open charm studies are difficult where recombination matters most

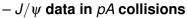
i.e. at low P_T

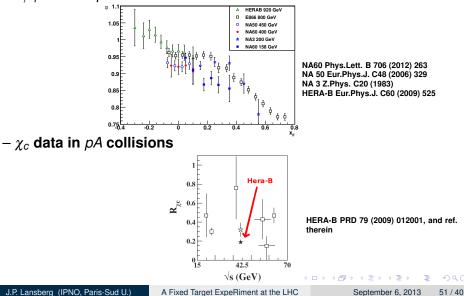

• Only indirect indications –from the y and P_T dependence of R_{AA}–

that recombination may be at work

• CNM effects may show a non-trivial y and P_T dependence ...

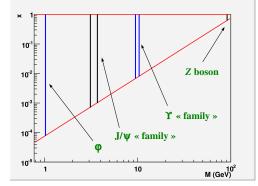
SPS and Hera-B

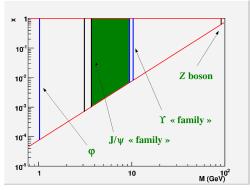

$-J/\psi$ data in *pA* collisions



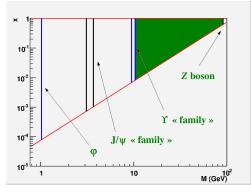
NA60 Phys.Lett. B 706 (2012) 263 NA 50 Eur.Phys.J. C48 (2006) 329 NA 3 Z.Phys. C20 (1983) HERA-B Eur.Phys.J. C60 (2009) 525

J.P. Lansberg (IPNO, Paris-Sud U.)


SPS and Hera-B

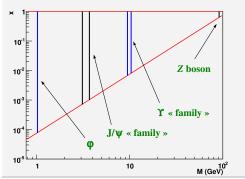

A dilepton observatory

 \rightarrow Region in x probed by dilepton production as function of $M_{\ell\ell}$


A dilepton observatory

- → Region in x probed by dilepton production as function of $M_{\ell\ell}$
- \rightarrow Above $c\bar{c}$: $x \in [10^{-3}, 1]$
- \rightarrow Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

A dilepton observatory

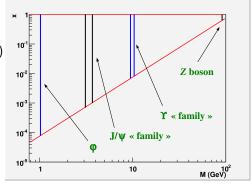

- → Region in x probed by dilepton production as function of $M_{\ell\ell}$
- \rightarrow Above $c\bar{c}$: $x \in [10^{-3}, 1]$
- \rightarrow Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

A dilepton observatory

- → Region in x probed by dilepton production as function of $M_{\ell\ell}$
- → Above $c\bar{c}$: $x \in [10^{-3}, 1]$
- \rightarrow Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

Note:
$$x_{target} (\equiv x_2) > x_{projectile} (\equiv x_1)$$

"backward" region

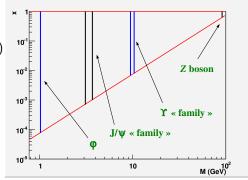

A dilepton observatory

- → Region in x probed by dilepton production as function of $M_{\ell\ell}$
- → Above $c\bar{c}$: $x \in [10^{-3}, 1]$
- \rightarrow Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

Note:
$$x_{target} (\equiv x_2) > x_{projectile} (\equiv x_1)$$

"backward" region

- \rightarrow sea-quark asymetries via *p* and *d* studies
- at large(est) x: backward ("easy")


- at small(est) *x*: forward (need to stop the (extracted) beam)

A dilepton observatory

- → Region in x probed by dilepton production as function of $M_{\ell\ell}$
- → Above $c\bar{c}$: $x \in [10^{-3}, 1]$
- \rightarrow Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$
- Note: $x_{target} (\equiv x_2) > x_{projectile} (\equiv x_1)$ "backward" region
- \rightarrow sea-quark asymetries via *p* and *d* studies
- at large(est) x: backward ("easy")

- at small(est) *x*: forward (need to stop the (extracted) beam)

→ To do: to look at the rates to see how competitive this will be

→ Relevant parameters for the future planned polarized DY experiments.

Experiment	particles	energy (GeV)	\sqrt{s} (GeV)	$x_{ ho}^{\uparrow}$	$\begin{pmatrix} \mathscr{L} \\ (nb^{-1}s^{-1}) \end{pmatrix}$
AFTER	$p + p^{\uparrow}$	7000	115	$0.01 \div 0.9$	1
COMPASS	$\pi^{\pm} + p^{\uparrow}$	160	17.4	0.2÷0.3	2
COMPASS	$\pi^{\pm} + p^{\uparrow}$	160	17.4	\sim 0.05	2
(low mass)					
RHIC	$p^{\uparrow} + p$	collider	500	$0.05 \div 0.1$	0.2
J-PARC	$p^{\uparrow} + p$	50	10	$0.5 \div 0.9$	1000
PANDA	$\bar{p} + p^{\uparrow}$	15	5.5	$0.2 \div 0.4$	0.2
(low mass)					
PAX	$p^{\uparrow} + \bar{p}$	collider	14	$0.1 \div 0.9$	0.002
NICA	$p^{\uparrow} + p$	collider	20	$0.1 \div 0.8$	0.001
RHIC	$p^{\uparrow} + p$	250	22	$0.2 \div 0.5$	2
Int.Target 1					
RHIC	$p^{\uparrow} + p$	250	22	$0.2 \div 0.5$	60
Int.Target 2					

→ For AFTER, numbers correspond to a 50 cm polarized *H* target. → $\ell^+\ell^-$ angular distribution: separation Sivers vs. Boer-Mulders effects