Search for vector-like quarks decaying to a Z boson with the ATLAS experiment

Universidade do Minho Escola de Ciências

Jornadas do LIP Évora, February 16-18

FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR Portugal

Vector-like quarks are a prediction of many beyond the Standard Model theories [1]. They have the same left- and right-handed SU(2) quantum numbers and can have FCNC at tree level. They can be isospin singlets, doublets or triplets. This analysis uses the full run-2 dataset collected by the ATLAS detector, targeting pair production of VLQ (with SM electric charge) decaying to a *Z* boson, in a semi-boosted, dileptonic final state. This is a key channel in the evolution of the Run 1 analysis published by ATLAS [2]. Control and signal regions design, results interpretation and treatment of the systematic uncertatinties are disccused.

Analysis strategy

Semi-boosted channel to be combined with a boosted dilepton channel and a trilepton channel. Search for events with low large-R jet multiplicity, at least 2 b-tagged jets and high energy Z candidate.

Expected mass limits

Expected upper limits (stat only) with 95% Confidence Level (C.L.) were derived using the CL_S method, for the singlet and doublet hypotheses.

There will be two signal regions, split by multiplicity of large-R jets, to take advantage of the signal to background composition differences, in order to improve the fit. Two control regions are defined, targeting the two main backgrounds: Z + jets and $t\bar{t}$. The scalar sum of jets $p_{\rm T}$ will be used as the discriminant variable.

Signal Regions

• Pre-Selection: \geq 2 *b*-tagged jets, \leq 1 large-R jet, 1 OS-SF lepton pair with mass > 50 GeV

• Signal Regions: 0 or 1 large-R jet, $|m_{\ell\ell} - m_Z| < 10$ GeV, $p_{\rm T}(\ell\ell) <$ 250 GeV

The vector-like *B*, in the singlet and doublet hypotheses has expected lower mass limits of 864 and 1034 GeV, respectively.

The vector-like T, in the singlet and doublet hypotheses has expected lower mass limits of 746 and 850 GeV, respectively.

Fitting strategy

Background only fit, with data in the signal and control regions. Experimental and theoretical uncertanties are fitted as nuisance

+jets Cross Section

parameters.

Z+jets Scale Z+iets Generato VV Cross Section tt Cross Section tt showerina tt scale tī PDF tī generato Fakes tt CR tt+Z Cross Section tt+W Cross Sectior tt+ll Cross Section tī+X scale tt+X generato Pile-up Muon MS Muon ID Muon ID Svs Luminosit LJet m tck LJet m mod LJet m bl k JET Punch Through JET PU Rho JET PU Pt JET PU Offset npv

References:

- 1. J. A. Aguilar-Saavedra, Identifying top partners at LHC, Journal of High Energy Physics, Volume 2009, JHEP11 (2009)
- 2. ATLAS Collaboration, Search for pair and single production of new heavy quarks that decay to a Z boson and a third-generation quark in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, JHEP 11 (2014) 104