ttH production in ATLAS Phase-II António Jacques Costa⁺, R. Gonçalo, P. Abreu and A. Onofre + antonio.jacques.costa@tecnico.ulisboa.pt

Motivation

- The coupling of the Higgs boson to top quarks can be directly measured in the $t\bar{t}H$ process
- An interesting probe for new physics is this lacksquarecoupling and, in particular, its CP nature
- In this beyond the Standard Model \bullet scenario, the most general Lagrangian term

State of the art

- Events are classified into control and signal ulletregions
- These regions are combined in a profile \bullet likelihood fit to test for the signal strength

for the coupling is

 $L = \kappa y_t \bar{t} (\cos \alpha + i \gamma_5 \sin \alpha) t H$

- y_t is the SM Higgs boson coupling to the top quark
- $\cos \propto = 1$ recovers the SM interaction while $\cos \propto = 0$ corresponds to the pure pseudoscalar case
- A mixture of the two components gives a new source of CP violation
- Search for the most probable Higgs decay $H \rightarrow bb$
- Background dominated by *ttbb* \bullet *g* 0000000000

systematic errors due to an imperfect modelling of the background $\mu_{ttH bb}$ almost compatible with zero (would mean no evidence for signal)

Going Beyond

HL-LHC

Luminosity Plans High The the of Luminosity LHC (Phase-II) [2]

 $\times 10^{3}$ Use side bands in m_{bb} distribution to estimate ⁵⁰ 3 b-tags the background and 40 ∭tĪH systematic 30 reduce ttZ ttj uncertainty ttbb Studies at $\sqrt{s} = 100$ with boosted TeV regime [4] 50 100 200 250m_{rec} [GeV] Reconstructed m_{bb}

Analysis Status

Very preliminary simplified analysis at $\sqrt{s} =$ 14 TeV

Next Steps

- Conclusion of the implementation of the original analysis
- Uncertainty on the top quark Yukawa coupling Estimation of the sensibility of the measurement to anomalous couplings

Optimization of the analysis

[1] ATLAS Collaboration, 2017, CERN-EP-2017-291, arXiv:1712.08895 [hep-ex] [2] The HiLumi LHC Design Study, The HL-LHC project [3] ATLAS Collaboration, 2017, CERN-EP-2017-291, arXiv:1712.08895 [hep-ex] [4] M. L. Mangano *et al.*, 2015, arXiv:1507.08169v2 [hep-ph]