Search for *tZ* production via Flavour Changing Neutral Currents with the ATLAS Experiment at 13 TeV

Universidade do Minho

Escola de Ciências

Juan Araque, Nuno Castro, Oliver Kind, Sebastian Mergelmeyer, <u>Ana Peixoto</u>

Jornadas Científicas do LIP - Évora, Portugal 16 to 18 February 2018

COMPETE 2020

FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR Portugal

In the Standard Model of Particle Physics (SM), the top-quark decays via Flavour Changing Neutral Currents (FCNC) are extremely rare. Nonetheless, some of its extensions predict a significant enhancement of the probability of such decays. An important way of probing the FCN coupling *tqZ* (with q being a u or c-quark) is the search for *tZ* production via FCNC [1][2][3]. With the ATLAS 13 TeV data collected in 2015 and 2016, a trileptonic analysis was performed. In the present poster the signal and control regions, as well as the interpretation of the results, will be discussed.

Current limits

Although FCNC processes are highly suppressed in the SM, these are enhanced in **new physics models**. The most stringent limit at 95% CL excludes $\mathcal{BR}(t \to qZ)$ greater than 0.02% [2].

Signal to background discrimination

The transverse momentum (p_T) of the Z boson candidate will be used as a discriminant variable due to the different shapes of

Analysis strategy

A search for the production of a single top-quark in association with a Z boson through FCNC processes is studied in this analysis. The final state of these processes is characterized by:

- two leptons coming from the Z boson
- one charged lepton and one neutral lepton (neutrino) coming from the W boson decay
- one b-tagged jet coming from the hadronisation of a bottom quark

- Five control regions are defined to study the modelling of the main backgrounds (Z+jets, WZ and $t\bar{t}$ processes)
- Signal region is split by low and high values of the transverse mass of the W boson to improve the branching ratio limits

signal and background processes.

Expected limits

The TOPFCNC Universal FeynRules Output (UFO) model is used to the signal generation where just the couplings between the top and the up or quark charm quark are considered.

$$\begin{aligned} \mathcal{L}_{FCNC} &= \sum_{q=u,c} \frac{g_s}{2m_t} \bar{q} \lambda^a \sigma^{\mu\nu} (\zeta_{qt}^L P^L + \zeta_{qt}^R P^R) t G^a_{\mu\nu} - \frac{1}{\sqrt{2}} \bar{q} (\eta_{qt}^L P^L + \eta_{qt}^R P^R) t H - \\ &- \frac{g_W}{2c_W} \bar{q} \gamma^\mu (X_{qt}^L P_L + X_{qt}^R P_R) t Z_\mu + \frac{g_W}{4c_W m_Z} \bar{q} \sigma^{\mu\nu} (K_{qt}^L P_L + K_{qt}^R P_R) t Z_{\mu\nu} + \\ &+ \frac{e}{2m_t} \bar{q} \sigma^{\mu\nu} (\lambda_{qt}^L P_L + \lambda_{qt}^R P_R) t A_{\mu\nu} + H.c. \end{aligned}$$

Expected upper limits at 95% Confidence Level for the **cross-section** of the tZ via FCNC processes were achieved using the CL_s method. The intersection between the theoretical curve obtained through MADGRAPH5_AMC@NLO and the limit on the cross-section corresponds to the limit on the anomalous couplings.

Signal region

Selection: = 3 leptons, \geq 1 opposite-sign and same-flavour pair of leptons with $|M_{\ell\ell} - M_Z| < 10$ GeV, = 1 *b*-tagged jet

The conversion of the limit on the anomalous coupling to the **branching ratio** is made using the MADGRAPH5_AMC@NLO with the UFO model considered before.

Coupling	$\sigma_{FCNC\ tZ}$ [pb]	K_{qt}^L/Λ_{NP} [TeV ⁻¹]	$\mathcal{BR}(t \to qZ)$
K_{ut}^L	0.2	0.01	$0.2 imes 10^{-3}$
K_{ct}^{L}	0.3	0.05	$0.2 imes10^{-2}$

References:

- 1. J. A. Aguilar-Saavedra, A minimal set of top anomalous couplings, Nucl. Phys. B81, 181-204 (2009)
- 2. ATLAS Collaboration, ATLAS-CONF-2017-070 (2017)
- 3. CMS Collaboration, CMS PAS TOP-17-017 (2017)

Ana Peixoto supported by FCT, COMPETE2020-Portugal2020, FEDER, POCI-01-0145-FEDER-007334, by the project CERN/FIS-PAR/0008/2017 and by the FCT grant SFRH/BD/129321/2017.