Exploring dense matter with dielectron probes at HADES

Jornadas LIP - Évora, 16 February 2018

FCT

Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA. TECNOLOGIA E ENSINO SUPERIOR

Celso Franco on behalf of the HADES group

Phase diagram of QCD matter: From Big-Bang to Neutron Stars

Dilepton probes in Heavy-Ion collisions (HIC)

• The different phases of QCD matter are best investigated by <u>analyzing the</u> <u>hadron properties within the fireball</u> (*hot/dense medium*) created by a **Heavy-Ion collision**:

Time evolution of a

- Why dileptons?
 - They are emitted during the whole history of a HIC
 - <u>They leave the fireball undisturbed</u> (no strong interaction in the dense medium)

The HADES experiment: Fixed target setup using proton (1-4 GeV), pion (0.4-2 GeV) and nuclei (1-2 AGeV) beams from SIS18 at GSI

- HADES program (spectrometer optimized for rare probes $\rightarrow ex$. BR(e⁺e⁻) ~ 10⁻⁵):
 - Excitation function for low mass e^+e^- and strange baryons and mesons
 - Various aspects of baryon-resonance physics

Relevance of the Au+Au program: $\sqrt{S_{NN}} = 2.42 \text{ GeV}$ ($E_{Au} = 1.23 \text{ AGeV}$)

• Great conditions to study the properties of hadrons within a <u>dense baryon-rich medium</u>:

Examples of hadronic reconstruction at HADES: Au+Au data

Identification of Positrons and Electrons

- Relevant information for the PID of $e^{+/-}$:
 - Particle velocity β
 - Particle momentum **p**
 - Energy Loss in tracking detectors
 - Charge deposited in Shower detector
 - Track quality
 - Cherenkov radiation (generated when e+/- traverse the RICH detector)

- All variables are combined in a multivariate analysis by a **Neural Network** (NN)
- The NN improves the efficiency of the lepton selection up to a maximum of 10%, <u>specially at high-momentum</u>, due to the consideration of multidimensional correlations

Flowchart of the method used for the PID of leptons

Dilepton reconstruction

• **Definitions** (combinatorial background & signal):

$$CB = k(2\sqrt{N_{e+e+}} \times N_{e-e-})$$
 estimated from
like-sign pairs
Signal = $N_{e+e-} - CB$
contribution from $\gamma \rightarrow e^+e^-$ (conversion in the
spectrometer) is subtracted: $\theta(e^+,e^-) > 9$ deg

estimated using leptons from different events of similar multiplicities, with the leptons originating from similar target positions

Invariant mass spectra of e⁺e⁻: Au+Au data

Hadronic cocktail

Temperature & lifetime of the fireball: using the acceptance corrected mass spectrum subtracted from the first chance collisions and the cocktail

Description of the fireball evolution: Coarse-Graining hadron transport (Eur. Phys. J. A, 52 5 (2016) 131)

- Theoretical description of the dilepton emission rates in HADES:
 - <u>Au+Au is simulated with UrQMD</u> (Ultra Relativistic Quantum Molecular Dynamics)
 - The volume of the fireball is discretized in $21\times21\times21$ space cells of 1 fm³ and their evolution is analyzed in 30 time steps of $\Delta t = 1$ fm/c (~280 k cells)
 - For each cell the bulk properties are extracted: T, μ_B and \vec{v}_{coll} . The dilepton rates are calculated from these inputs and summed up for all cells

$$\frac{d^{3}N}{dMdydp_{t}} = \int_{t=0}^{\infty} \frac{d^{4}\varepsilon}{d\mathbf{p}} \left[T(\mathbf{x}), \mu_{B}(\mathbf{x}), \bar{v}_{coll}(\mathbf{x}), ... \right] d\mathbf{x}$$

Results from the Coarse-Graining (CG) simulation

The CG models are embedded with a strongly broadened p meson in order to account for the direct p-baryon scattering inside the dense medium (Adv. Nucl. Phys. 25 (2000))

Summary

- HADES explores baryon-rich matter at SIS18 (energies < 2 AGeV) using several collision systems of different sizes. The excitation function of e+e- from the heaviest system explored so far, <u>Au+Au collisions at 1.23 AGeV</u>, is now completed:
 - The medium radiates in a "Planck-like" way with $T \approx 72$ MeV (hotter than at freeze-out)
 - The fireball lifetime is easily accessed due to the non-linear dependence of dilepton emission with the system size. The lifetime was found to be quite long: $\tau \approx 13$ fm/c
 - The dilepton emission by the baryon-rich medium ($\rho_{max} \approx 3\rho_0$) can be explained by a strong in-medium broadening of the ρ meson
 - The medium investigated by HADES can provide new insights about poorly known Astrophysical processes

First measurment of radiation from matter in the same conditions as neutron star mergers!

Outlook

- FAIR phase 0 (2018-2020):
 - Ag + Ag at 1.65 AGeV \rightarrow access for the first time at these collision energies the intermediate mass dileptons (*above 1 GeV*), in order to <u>study the chiral</u> <u>p-a1 mixing and also to quantify the lifetime and baryon density</u> dependence of the p spectral function
 - π + p/A at \sqrt{s} = 1.7 1.9 GeV \rightarrow unique study of the electromagnetic structure of baryonic resonances
 - p + p/A at 4.5 GeV \rightarrow measure, for the first time, the EM transition form factor of hyperon Dalitz decay ($Y \rightarrow Ae^+e^-$)