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Scintillation cameras
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Applications:

Medical imaging (clinical and pre-clinical)

o
e Quality control - defectoscopy
e Radiation monitoring - visualisation of contamination
e Neutron imaging



Statistical reconstruction
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Standard calibration procedure
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Scan the crystal with pencil beam of
monoenergetic y-rays on a fine grid
then fit the obtained data with

X appropriate smooth function

Problems:

e Time consuming (Nstepsz)
e 3D is feasible (scan at different angles and solve a linear system) but

cumbersome and even more time consuming (Nsteps3)




Machine learning interpretation
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Event parameter space
eg.Xx,y,z

e Treat each event as a n-dimensional vector / point in n-dimensional space
(signal space)

e Similar events (close position/energy) < neighbours in the signal space

e Events are mapped from (low-dimensional) parameter space to the signal
space

e These mapped events lay on a low-dimensional manifold embedded into
higher-dimensional signal space




Nearest neighbour (kNN) calibration

\

X-scan

Y-scan

Pencil beam -> knife-edge beam

2D scan -> 2 x 1D scans (Nsteps2 ->2xN
3D scan -> 3 x 1D scans (Nstep83 -> 3 X No06)
Use kNN to find the points on the intersection
between the scan lines/planes

Then proceed as in the standard calibration

steps)

First test with small (30x30 mm?) scintillation
camera confirmed feasibility, though additional work
is required to improve linearity




3D position sensitivity of thick LaBr3 crystals

LaBr, crystals are very popular due to their excellent energy resolution. In some
applications, 3D position sensitivity is required as well:

e Study of radioisotopes at relativistic velocities
e Compton camera for radiotherapy monitoring

In the work carried out in collaboration with Politecnico di Milano we explored
possibility of achieving position sensitivity in an off-the-shelf encapsulated crystal.
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As a proof-of-the-concept work, we
used Monte Carlo simulation in order
to evaluate the position sensitivity in
the full volume of a reference
scintillator detector consisting of a 3”
x3" LaBr,:Ce scintillator read out by a
square array of 6x6 mm? silicon
photomultipliers (SiPM)



Scintillator and coffee cup

The challenge: the scintillator is
designed to make light collection as
uniform as possible. However, the
position reconstruction depends on
variation of photosensor response
with coordinates. Fortunately, the
crystal is polished, so part of the

scintillation light undergoes specular

reflection
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The specularly reflected light creates spatial
patterns (caustics) on the output window of the
detector. The shape of these light patterns
depends on the source position so it can be used
to train the position reconstruction algorithm.



LaBr3 - Simulation results
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Manifold learning

/\/\/
' ' Non-linear . ’
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_ . ) manifold
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e \Would it work on data from a scintillation camera?
e \What kind of information can be extracted?
e \What is the best method?

o Multidimensional scaling
Isomap

Locally linear embedding
Spectral embedding

O O O O



Locally linear embedding (LLE)

Flood irradiation by
511 keV from %’Na

8 x 8 array of
SensL SiPMs

GAGG:Ce crystal
33.2x33.2x3 mm?

LLE
D?t_a_ Raw dat 30 neighbors
acquisition aw data 64 dimensions in
2 dimensions out

Scikit-learn package was used for data processing



Manifold mapping

“‘Heat maps” of the SiPM signal amplitude vs pseudo-coordinates
supplied by LLE. Arranged in right order they will indicate relative

positions of the corresponding SiPM.
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Manifold mapping
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LLE for the clinical camera

The same technique works for the clinical gamma

camera as well.
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Manifold mapping 2

Mapping worked as well,
thought was more tricky
for the outer PMT ring




Machine learning in ANTS2

e K Nearest neighbor (kNN) reconstruction

e Nearest neighbor filtering

e Neural networks

o  Currently: FANN
o Planned: upgrade to KERAS

e Channel gain (photoelectrons) calibration from flood irradiation

e Also planned:
o Genetic algorithms
o Self organizing maps

Data filtering Reconstruction options Advanced

|| Events Signals Energy Chiz2 Spatial Correlation MM
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Calibration settings
Number of neighbours: | 50

Number of trees: |4

o [

Reconstruct all events

Reconstruction settings \
Use calibration neighbours: | 10 ‘_

Weighting: | Mo weighting -

Save reconstruction: | as tree as text




Thank you



Backup



Mapping 1a
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Mapping 1
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