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Overview

● Scintillation cameras
● Reconstruction and calibration: traditional way
● Machine learning view: manifold in signal space
● Nearest neighbour calibration
● 3D position reconstruction in thick crystals
● Channel mapping through manifold learning
● Machine learning tools in ANTS2



Scintillation cameras

Data Acquisition

Scintillator
Light Guide

PMT Array

Applications:

● Medical imaging (clinical and pre-clinical)
● Quality control - defectoscopy
● Radiation monitoring - visualisation of contamination 
● Neutron imaging



Statistical reconstruction

Obtained through 
calibration



Standard calibration procedure
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Scan the crystal with pencil beam of 
monoenergetic γ-rays on a fine grid 
then fit the obtained data with 
appropriate smooth function 

Problems:

● Time consuming (Nsteps
2)

● 3D is feasible (scan at different angles and solve a linear system) but 
cumbersome and even more time consuming (Nsteps

3)



Machine learning interpretation
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n-dimensional 
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Event parameter space
e.g. x, y, z

● Treat each event as a n-dimensional vector / point in n-dimensional space 
(signal space)

● Similar events (close position/energy) ⇔ neighbours in the signal space
● Events are mapped from (low-dimensional) parameter space to the signal 

space
● These mapped events lay on a low-dimensional manifold embedded into 

higher-dimensional signal space



Nearest neighbour (kNN) calibration
● Pencil beam -> knife-edge beam
● 2D scan -> 2 x 1D scans (Nsteps

2 -> 2 x Nsteps)
● 3D scan -> 3 x 1D scans (Nsteps

3 -> 3 x Nsteps)
● Use kNN to find the points on the intersection 

between the scan lines/planes
● Then proceed as in the standard calibration

First test with small (30x30 mm2) scintillation 
camera confirmed feasibility, though additional work 
is required to improve linearityX-scan

Y-scan



3D position sensitivity of thick LaBr3 crystals
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LaBr3 crystals are very popular due to their excellent energy resolution. In some 
applications, 3D position sensitivity is required as well:

● Study of radioisotopes at relativistic velocities 
● Compton camera for radiotherapy monitoring

In the work carried out in collaboration with Politecnico di Milano we explored 
possibility of achieving position sensitivity in an off-the-shelf encapsulated crystal. 

As a proof-of-the-concept work, we 
used Monte Carlo simulation in order 
to evaluate the position sensitivity in 
the full volume of a reference 
scintillator detector consisting of a 3”
×3” LaBr3:Ce scintillator read out by a 
square array of 6x6 mm2 silicon 
photomultipliers (SiPM)



Scintillator and coffee cup 

Average signal detected by the elements of SiPM array

Scintillation light distribution across the output window

Scintillation position

The specularly reflected light creates spatial 
patterns (caustics) on the output window of the 
detector. The shape of these light patterns 
depends on the source position so it can be used 
to train the position reconstruction algorithm. 

The challenge: the scintillator is 
designed to make light collection as 
uniform as possible. However, the 
position reconstruction depends on 
variation of photosensor response 
with coordinates. Fortunately, the 
crystal is polished, so part of the 
scintillation light undergoes specular 
reflection 



LaBr3 - Simulation results

Z = 15 mm Z = 0 mm Z = -15 mm Z = -30 mm

X vs Y scatter plot for 
the reconstructed grid 

points at given Z

X projection for the 
reconstructed grid 
points at given Z

Z projection for the reconstructed 
grid points at Z = -30, -15, 0, 15 and 
30 mmSpatial resolution at the crystal axisGrid (xyz): 15 x 15 x 7.5 mm3



Manifold learning

Non-linear 
dimensionality 

reduction algorithm 

Manifold in 
n-dimensional 
signal space

“Flattened” 
manifold

● Would it work on data from a scintillation camera? 
● What kind of information can be extracted? 
● What is the best method?

○ Multidimensional scaling
○ Isomap
○ Locally linear embedding
○ Spectral embedding
○ ...



Locally linear embedding (LLE)

Data 
acquisition

LLE
30 neighbors

64 dimensions in
2 dimensions out

Raw data

Scikit-learn package was used for data processing



Manifold mapping

“Heat maps” of the SiPM signal amplitude vs pseudo-coordinates 
supplied by LLE. Arranged in right order they will indicate relative 
positions of the corresponding SiPM. 



Manifold mapping

The solved “puzzle” 
indicates the correct 
channel mapping, as 
confirmed by the 
reconstructed image



LLE for the clinical camera
The same technique works for the clinical gamma 
camera as well. 

LLE 



Manifold mapping 2

Mapping worked as well, 
thought was more tricky 
for the outer PMT ring



Machine learning in ANTS2
● K Nearest neighbor (kNN) reconstruction
● Nearest neighbor filtering
● Neural networks

○ Currently: FANN
○ Planned: upgrade to KERAS

● Channel gain (photoelectrons) calibration from flood irradiation
● Also planned:

○ Genetic algorithms 
○ Self organizing maps
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