

SINOH

Sofia Andringa, Fernando Barão, Ana Sofia Inácio, Pedro Jorge, Amélia Maio, <u>José Maneira</u>, Stefan Nae, Gersende Prior, Valentina Lozza

> Jornadas do LIP, Évora February 17, 2018

Fundação para a Ciência e a Tecnologia MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

2

Very deep (2 km, 6000 mwe), very clean (class 2000 clean room) underground laboratory in Sudbury, Ontario, Canada

Ideal conditions for low background physics!

SNQ SNO+ Collaboration

COIMBE

24 Institutes

- Armstrong Atlantic State University
- Boston University
- Brookhaven National Laboratory
- Lancaster University
- Laurentian University
- Lawrence Berkeley National Laboratory
- LIP Coimbra
- LIP Lisboa
- Oxford University
- Queen Mary, University of London
- Queen's University
- SNOLAB
- Technical University of Dresden
- TRIUMF
- Universidad Nacional Autonoma de Mexico
- University of Alberta
- University of California Berkeley
- University of California Davis
- University of Chicago
- University of Liverpool
- University of North Carolina at Chapel Hill
- University of Pennsylvania
- University of Sussex
- University of Washington

Universidad Nacional

Autónoma de México

AGO

UNIVERSITY of WASHINGTON

SNG LIP Group

Neutrino-less double beta decay

- Only happens if neutrinos are of Majorana type
- Half-life depends on the neutrino mass

 $\frac{1}{T_{1/2}^{0\nu}} = \frac{G_{0\nu} |\mathcal{M}_{\nu}|^2}{|\mathcal{M}_{ee}|^2} \frac{|m_{ee}^{\nu}|^2}{|m_{e}|^2}$

Half-life

Nuclear Physics terms Particle Physics term Effective Majorana mass Depends on masses m1, m2, m3 also on neutrino mixing parameters

$$m_{\rm ee}^{\nu} = m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{2i\alpha_2} + m_3 s_{13}^2 e^{2i(\alpha_3 + \delta)}$$

Neutrinoless double-beta decay search with Tellurium at SNO+

- Massive detector, provides self-shielding of external backgrounds
- Advantages of ¹³⁰Te
 - Large natural isotopic abundance (34%), so no enrichment needed to deploy tonne-scale of isotope
 - High half-life of 2ν mode: $T_{1/2}^{2\nu\beta\beta} = 7.0 \times 10^{20}$ yr
- Liquid scintillator
 - can be purified on-line
 - loading can be changed
 - fast timing allows rejection of several time-correlated radioactivity backgrounds
 - strict control of backgrounds close to spectrum endpoint (2.53 MeV)

SNG Tellurium-loading

• A bit of chemistry...

Telluric acid + 1,2 butane-diol

TeBD very transparent and soluble in LAB liquid scintillator

Expect 400 p.e./MeV

Tellurium-butanediol complex (TeBD)+ water (evaporate after synthesis)

> SNO+ phase I loading: 0.5 % = 1333 kg of isotope

Tellurium

1.8 t underground

SNO+ Developments and Status

SNG Purification system

Chemical plant built underground!

- distillation
- water extraction
- gas/vapor stripping

SNG Detector

PMTs

9300 8' diameter
(Hammatsu)
Reflectors to
increase collection

Acrylic vessel

5 cm thick
6 m diameter

 New rope system

 takes up buoyancy of scintillator
 tested during water fill

Water fill

Camera above water Light above water Camera below water Light above water Camera below water Light below water

SNQ Data-taking!

Muon candidate grazing the detector

LIP Contributions

SNQ External Light Sources

arXiv:1411.4830

- LIP responsible for:
 - $\cdot > 100$ PMMA fibers
 - feed-throughs and mount points done at LIP-Coimbra
 - installation plan
- LED rack Feed-through box for fibers Calibration clean TOCES Bundle with all fibers AV hold-up moes PSUP hold-up ropes fiber instica support AV

- Since 2016
 - completed installation
 - all channels working!

SNG Internal calibration sources

Umbilical cable for fibers, elect. cables, gas tubes

Umbilical Retrieval Mechanism (LIP) Move and control 26 meters of cable and rope, without letting Radon gas into the detector

> Ropes for moving the source around

Big Effort of Coimbra Workshop and Lab: Thanks!

Coimbra, Sep. 2016

SNOLAB, Jan. 2017

- Second system in construction, to be sent in 2018
- see A. Blanco this afternoon

SNG Water phase calibration

(using old SNO system)

- Calibration hardware records data from source deployment
 - Source type, position, orientation, ...
 - Laser rate, wavelength, intensity, ...
- LIP responsibility (F. Barão, JM)
 - produce run-level DB summary tables for analysis and Monte-Carlo
 - used in all (> 300) calibration runs (Laserball, N16, AmBe)
- Big laserball scan
 - 6 wavelengths x 35 positions
 - l week of data (Dec. 2017)

Laserball calibration source

SNG Group velocity check

SNG Optical calibration

- Model occupancy as a function of source position and wavelength (remove shadows, etc)
- Fit water attenuation, source distribution, PMT response
 - follows reflectivity degradation -> to be used in scintillator phases

- JM, G. Prior working group conveners
- A.S. Inácio responsible for water phase laserball analysis

SNG DQ/Run Selection

- DQ low level
 - detector state/lab conditions
 - Ex.: HV nominal ? readout errors ?

- DQ high level, example checks:
 - Physics triggers OK?
 - Rates as expected ?
 - 10 MHz/50 MHz clocks agree ?
- Continuous data-taking 24/7 since > 1 yr
- Big job organizing the DQ checks, tuning the cuts, validating all runs
- LIP responsibilities
 - Gersende Prior Run Selection group leader
 - Stefan Nae RS analysis, DB browser

SNG Reactor antineutrinos No oscillation All reactors oscillated No Bruce All over 700km distance Manitoufin Geoneutrinos loland. Αίσοποιώ

LIP Detroi Currently focusing on water phase

vovincial P

Buffalo

Bruce

Pickerin

London

Mississauga 50 km

240 km

MICHIGAN

rand Rapids

Sofia Andringa working group convener

Ev (MeV)

See poster by

Stefan Nae

- never done with "normal" triggers in unloaded water **Cherenkov** detector
- what data periods have good triggers/low bg? ullet

NEW YORI

- optimizing coincidence selection cuts
- neutron efficiency calibration with AmBe source, Jan. 2018 ullet
- currently analyzing the data, that mimics antinu signal

SNG Water Backgrounds

- Identify "hot" regions, potential causes
- Daily data analysis by Valentina to monitor time evolution in ≠ zones, cross-check with recirculation flow
- Identified issues with circulation routes, trigger settings
- Define cuts for nucleon decay analysis

- LIP responsibility
 - Valentina Lozza Backgrounds group leader

24

SNG Next milestones

• Detector

2018

2019

- Continue water phase calibrations & physics
- Scintillator fill
- Pure scintillator commissioning phase
- Mix Tellurium in
- Tellurium-loaded phase starts

- Scintillator plant
 - Commission scintillator plant
 - Install Telluric acid purification
 - Install diol purification

Physics in water and pure scintillator phases

Invisible nucleon decay

 $\begin{array}{c} n \rightarrow \nu \nu \nu \\ p \rightarrow \nu \nu \mathbf{X} \end{array}$

SNQ

leaves unstable nuclei

 $^{16}\mathrm{O} \rightarrow {}^{15}\mathrm{O}^* \rightarrow \sim 6 \text{ MeV } \gamma$ $({}^{15}\mathrm{N}^* \rightarrow \sim 6 \text{ MeV } \gamma)$

- Solar neutrinos
 - search for non-standard oscillations
 - constrain solar models
 - Supernovae neutrinos
 - low threshold interesting for v-proton scattering

SNC Backgrounds for 0vββ search

Sensitivity

Expected spectrum for 5 yrs.

- Assumptions (theory):
- effective v mass: 100 meV
- matrix element = 4.03 (IBM-2)
- $gA = 1.269, G = 3.69 \times 10^{-14} \text{ yr}^{-1}$

Assumptions (expt.):

- 0.5% natTe loading
- R < 3.5 m (FV = 20%)
- > 99.99% (98%) rejection of ²¹⁴BiPo (²¹²BiPo)
- light yield 390 Nhits/MeV

 $T_{1/2} \ge 2 \ge 10_{26} \text{ yr} (90\% \text{ CL}, 5 \text{ yr})$ $m_{\beta\beta} \approx 40 - 90 \text{ meV}$

28

Comparison with other experiments

SNQ

We don't know which of the nuclear models (diagonal lines) is best.

Large uncertainties.

Need experiments with different isotopes!

SNG Summary and outlook

- SNO+: large amounts of Tellurium in liquid scintillator
 - Expect to reach the top of the inverted hierarchy, with 0.5%, and potentially better with higher loadings in Phase II
- Progress on many fronts: taking water data!
- LIP participation since the beginning, and growing
 - Calibration systems, analysis methods
 - Data quality; selection of good physics runs
 - Characterizing backgrounds from radioactivity: external gammas, correlated decays, cosmogenics
 - Antineutrino search: neutron response in scintillator and water
- Looking also for future experiments
 - considering participating in DUNE, long-baseline neutrino oscillation experiment with beam from Fermilab

SNG Outlook

- Detector full with water, and taking data!
 - Busy with analysis, calibrations...
 - Soon, scintillator data and then Tellurium!

<u>Acknowledgements</u>

This work was partially funded by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the following project grants:

- PTDC/FIS-NUC/0640/2014
- EXPL/FIS-NUC/1557/2013
- IF/00863/2013/CP1172/CT0006
- PTDC/FIS/115281/2009

SNO Extra slides

SNG Tellurium purification

V. Lozza and J. Petzoldt, Cosmogenic activation of a natural tellurium target, Astroparticle Physics 61 (2015) 62-71.

35

Activation of Tellurium by cosmic rays produces isotopes w/ decays close to DBD peak and w/ long half-lives:

• "Cooling down" UG helps, but is not enough

Purification Method:

- dissolve Te-acid in water, filter
- force re-crystallization, w/ nitric acid
- pump away liquid, rinse
- Cobalt efficiency: 10²-10³ per pass, 10⁶ double-pass
- done UG to avoid quick build-up

S. Hans et al., NIMA795 (2015) 132-139

Pilot plant: 10 kg Now building full scale: 200 kg per batch

Half-life

Nuclear Physics terms

Wide variation in nuclear matrix element predictions Essential to measure with several isotopes

Solar spectrum

SNG Calibration overview

- Types of sources
 - radioactive (gamma, neutron) or optical (lasers, LEDs)
- But avoid introducing radioactivity!

- Two approaches
 - external light sources (fibers) for frequent use
 - sources inside the AV. Very careful material selection and sealing of mechanism

TABLE 1: Calibration sources that are considered for use by the SNO+ experiment.

Source	AmBe	^{60}Co	⁵⁷ Co	²⁴ Na	^{48}Sc	^{16}N	$^{220}Rn/^{222}Rn$
Radiation	n, γ	γ	γ	γ	γ	γ	α, β, γ
Energy [MeV]	2.2, 4.4 (γ)	2.5 (sum)	0.122	4.1 (sum)	3.3 (sum)	6.1	various