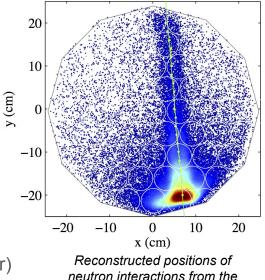
Recent results from LUX

Jornadas LIP 2018

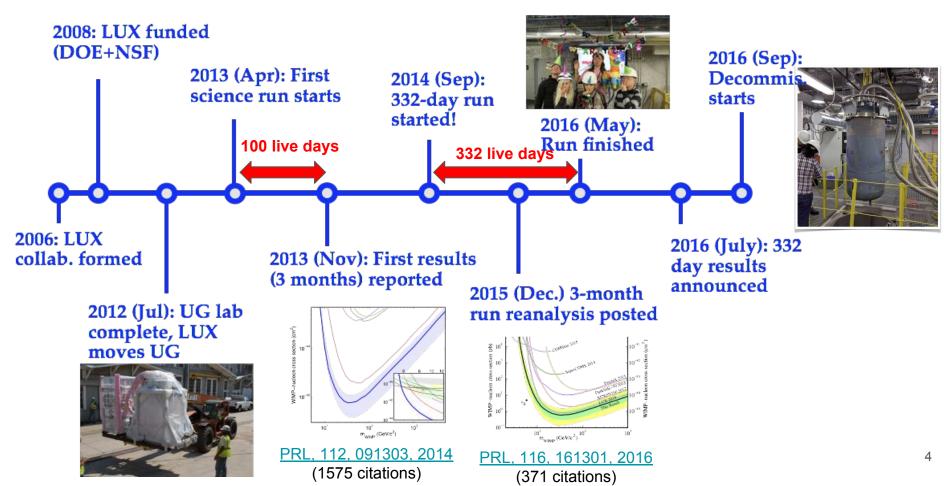
A. Lindote, 17 February 2018

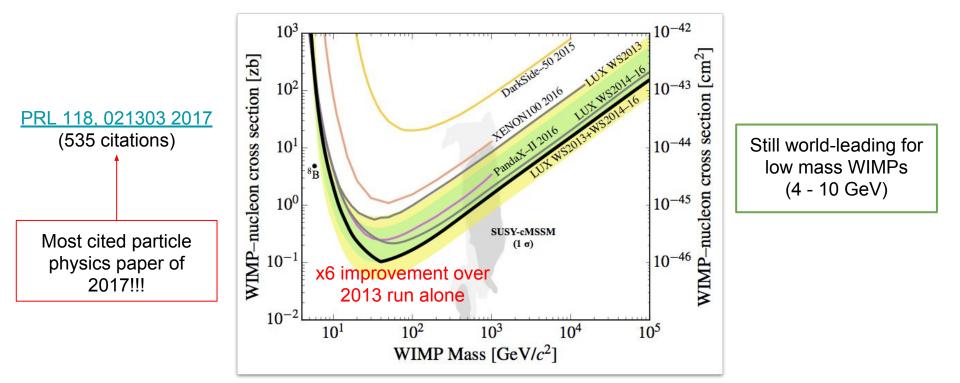
The LUX Detector

- World-leader in WIMP sensitivity (2013 - 2017)
- 250 kg active Xe target ~30× less than LZ
- Technology pioneer:
 - Titanium cryostat Ο (ultra-low background)
 - Use of thermosyphons for cooldown Ο
 - Chromatographic separation of Kr content Ο down to ~4 ppt
 - Precise low-energy calibrations for Xe ER 0 and NR response
 - Sources mixed in Xe (^{83m}Kr, CH₃T, ¹⁴C)
 - Neutrons from DD generator


LUX internals: PTFE reflectors and top PMT array

LIP responsibilities

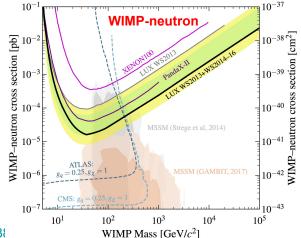

- Hardware
 - LN System (F. Neves)
 - Fully automated system, hardware and software developed at LIP
 - Control System (V. Solovov)
 - ~500 channels (sensors, valves, HV, etc.), interface via mySQL (~2k accesses /s)
- Software and Analysis
 - Position reconstruction algorithm (C. Silva, V. Solovov)
 - Mercury, developed at LIP for ZEPLIN-III (<u>JINST 13 P02001 2018</u>)
 - Data processing (A. Lindote)
 - Development of the DP framework, processing of all the experiment data (>1 PB)
 - Many analysis contributions (WS analysis, wall model, etc.)
- Coordination Positions
 - Detector operations, on-site science operations, data processing
 - Analysis workgroup coordination (C. Silva is the current coordinator)

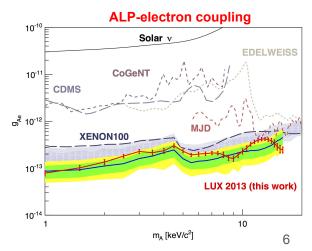

DD generator

LUX Timeline

WIMP SI Sensitivity

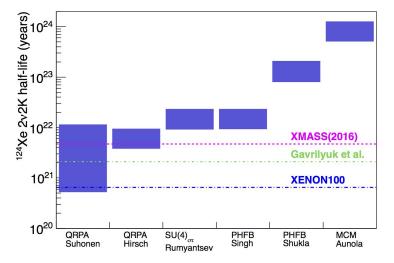
In January 2017 LUX published the combined sensitivity of the two runs




LUX was the most sensitive WIMP detector for 4 years (Oct. 2013 - Oct. 2017)

Other Physics Studies

LUX has a large amount of data which can be used for other analyses:


- Spin-dependent WIMP interactions (PRL 118. 251302 2017)
- Xenon physics
 - Low energy ER and NR calibrations (PRD 93, 072009 2016, arXiv:1608.053)
 - Recombination and energy resolution (PRD 95. 012008 2017)
- Other Dark Matter candidates
 - Axions and ALPs (PRL 118, 261301 2017)
 - Mirror DM, light WIMPs, LIPs
- Neutrino studies (e.g magnetic moment)
- Rare decays in xenon isotopes
 - Neutrinoless double beta decay in ¹³⁶Xe and ¹³⁴Xe
 - Double beta decay in ¹³⁴Xe
 - <u>Double electron capture in ¹²⁴Xe</u>

Double electron capture in ¹²⁴Xe

- $^{124}Xe + 2e^{-} \rightarrow ^{124}Te + 2v_{e}$ (allowed in the SM)
- Neutrinoless mode: lepton number violation, Majorana nature of the neutrino
- Studying the normal decay:
 - Tests nuclear models
 - \circ Improves estimate of 0v half-life
- In ¹²⁴Xe: 76.7% of the times the 2 captured electrons are from the K-shell
 - De-excitation X-rays and Auger e⁻s: ~64 keV
- Half-life estimate:
 - \circ 10²⁰-10²⁴ yr (from different nuclear models)
- In LUX:
 - \circ 10²¹–10²² yr sensitivity achievable

7

Summary

- LUX had 4 extremely productive years, and is still producing new physics results
 - World leading WIMP search experiment until late 2017
 - Made significant improvements in the calibration of xenon detectors
- Various additional analyses are on-going, to explore the full physics potential of the data
 - WIMP annual modulation, inelastic DM, EFT, etc.
- Accumulated expertise used in the design of LZ
- The LIP team was deeply involved in all areas of the experiment
 - Made crucial contributions in hardware, software, data analysis and team coordination

