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Introduction Event Generation and Simulation Angular distributions at generator+PS level !

e New sources of CP violation are required to account for the ob- | Je MADGRAPH5 AMC@NLO [3] with NNPDF2.3 PDF sets [4]
served baryon asymmetry in the Universe [1]

LHC, (s = 13 TeV ttH events (m, =125 GeV) LHC, {s =13 TeV ttA events (m, =125 GeV)
MadGraph5_aMC@NLO e+l channel MadGraph5_aMC@NLO e+l channel
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|e UFO Model for signal: HC_NLO_XO [5]
e Some BSM theories, namely 2HDMs [2], predict Higgs bosons 0.001
which are not CP eigenstates, leading to CP-violating Higgs inter- §

actions

e Top Yukawa interaction was parametrised as

—0.0008

L=kryst(cosa +iyssina)th

0.0006

e The top quark is the most massive fermion and ¢¢h production will =
allow the first direct measurement of its Yukawa coupling

0.0004

e tth signal: m; = 125 GeV, cos o from -1 to 1

0.0002

e Can angular observables in tth (dilepton) events at the LHC
be used to measure the CP nature of the top quark Yukawa
coupling?

— cosa = x£1 = SM, pure CP-even Higgs boson (h = H)
— cosa = 0 = pure CP-odd Higgs boson (h = A)

A6M(E,H) AOATA)
e pp collisions with /s =13 TeV

T YN - I _ - 2D distributions of tth events, at generator+PS level, over the angle between the ¢ and k directions
e ith and ttbb were generated at NLO in QCD. #t + jetS (C and Ilght) (y-axis) and the angle between the ¢ and h directions (x-axis), all evaluated in the tth rest frame.

and other SM backgrounds generated at LO with additional jets The plot on the left shows tt H events and the plot on the right shows t¢ A events.
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Angular observables
e With motivation from processes such as that on the left diagram, a

generic chain of two-body decays (right diagram) was considered:
(123) - 1+4+(23), (23) =2+ (3)and (3) - 4+5

e MADSPIN [6] used to decay h and the ¢t system (dileptonically) e CP nature of the Yukawa interaction significantly affects the

e Parton shower (PS) and hadronization: PYTHIAB [7] kinematics of production

e In ttH, more events are produced in which ¢ (or t) recoils against

Ml e Fast detector simulation with DELPHES [10].The b-tagging efficiency 2 €
| the th (th) system. In ttA, events are more evenly spread

goes up to 50% (20%) for true b-jets (c-jets).
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Event selection and kinematic reconstruction

e Event selection: _ _ _
e Neutrinos are reconstructed by imposing

— >4 jets and 2 opposite-sign leptons (e or w), all with W and top mass constraints and that the (Dog +pu)? = m%m,
e 0 is the angle between the direction of Y, in the rest frame of X, pr > 20 GeV and [n| < 2.5 pr of vand 7 add up to the Ex inthe  (p,_ +p,)2 = m3_,
and the direction of X, in the rest frame of its parent system — |mee —my| > 10 GeV detector (Py+ +pb>z _ mz’
e Three families of observables: f(61%%)g(63), f(0i%%)g(03°) and — At least 3 b-tagged jets o If multiple solutions are found, a likelihood (pw- +pp)° = Z}za
023)g(63), with f, g = {sin, cos o i imi py +py = EF,
1(05%)9(63) fr9=1 J e 16% (17%) of ttH (ttA) signal events are accepted 'S m.aX|m|sed to choose the most adequate pl +pl = E™SS
e A set of observables was obtained by replacing 1, 2 and 3 with all | ) _ _ _ one. v v
permutations of (¢, 7, h) and replacing 4 with all the decay products [lii® O the reconstruction of ¢, ¢ and , a jet assignment is 1
of t,torh picked using a BDT: Lz, ~ pT—pT_P(pT,,)P(pT,;)P(th)P(pTz)P(th{)P(mt, mg)P(mp),

e Observables proposed in previous works were also studied. Two of — Training on ttH events

the most compelling ones were by, from [11], and B,; A (¢, 07),
from [12]

where P(X) is the probability density function (p.d.f.) at generator+PS level

— Object-pair variables used as input: AR, A®, lab- of the observable X, evaluated at the reconstructed value of X

frame angles A# and invariant masses

Asymmetries

e Asymmetries associated to each of the observables xy under study
were defined according to (see [13])

Reconstruction performance on ttH events

e Solution is found in 62% (61%) of selected tt H (tt A) signal events. In 31% (34%) of the tt H (tt A) signal events, the reconstruction
results in the same jet assighment as a A R truth-matching

N(xy >0>—N($y<0>
N(zy > 0)+ N(zy <0)
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pr distributions of v (left), ¢ (middle-left) and H (middle-right) after t¢ H reconstruction. On the z-axis is the generator+PS level p and on the y-axis is the reco-level p. On the right,reconstructed m g .

AY values in ttH, ttA and ttbb events for a selection of observables with significant sig-
nal/background or tt H/tt A separation, at generator+PS level (before selection cuts) and after full
kinematic reconstruction (including cuts).
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Selection cuts + Reconstruction Selection cuts + Reconstruction
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Conclusions
e Angular observables in tth events keep information about the

Expected limits at 95% CL |

[ e Jus -0 Z. CP nature of the top-Higgs coupling, even after cuts, detector
e A BDT was trained for signal/background Just- o' : simulation and kinematic reconstruction

classification for each value of cos a. Input
variables include the observables studied and
variables used in the ATLAS 8 TeV search [14].

o Expected limits at 95% CL were obtained us- i ————— e

e Most powerful observables require ¢th reconstruction

95% CL limit on 6xBR(h—sbb)[pb]

95% CL limit on oxBR(h—sbb)[pb]

e Search is not too sensitive to the CP-phase «
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