

Assessment of Radiation Exposure in Manned Missions to Mars for Three Profiles

Ana Luísa Casimiro^{1,2}

¹LIP, Laboratório de Instrumentação e Física Experimental de Partículas; ²IST - UL, Instituto Superior Técnico – Universidade de Lisboa ana.luisa.casimiro@tecnico.ulisboa.pt

Supervisors: Patrícia Gonçalves & Jorge Miguel Sampaio

Introduction

Manned missions to Mars are the next step to human expansion in the Solar System.

Radiation hazards are considerable and quantification and mitigation of these risks are essential.

In a Mars mission, the radiation fields present are:

- Van Allen Belts (VA): protons and electrons
- Galactic Cosmic Radiation (GCR): protons and heavy ions
- Solar Energetic Particle (SEP) events: protons and electrons
- Mars radiation environment weak magnetic field and only atmospheric shielding present.

Radiation in free-space (GCR), around Earth (VA) and worst-case SEP event

Radiation arriving Mars surface after GCR interaction with Martian atmosphere and soil surface

Stochastic - 3% REID			
(yrs) Career dose limits (Sv)			
Male	Female		
0.7	0.4		
1.0	0.6		
1.5	0.9		
3.0	1.7		
	Career dos Male 0.7 1.0 1.5		

Simulation with the ICRU sphere (76,2% O; 11,1% C; 10,1% H; 2,6% N) to determine Equivalent Dose for NASA three mission profiles:

- Total dose for the mission
- **Dose from Van Allen belts, GCR, SEP and on Mars**
- Comparison with dose limits for astronauts careers
- Both without and with 27.8 g/cm2 Al Shielding

NASA three mission profiles

Comparison with RAD/MSL measurements

RAD: Radiation Assessment Detector

particle detector on board Curiosity rover of MSL (Mars Science Laboratory)

Measured protons and other particles from:

- GCR during Earth to Mars cruise phase
- Mars surface stay.

Total absorbed dose rates			
SPENVIS spectrum	RAD measurements	Deviation	
June 30, 2012	June 11 - July 14, 2012		
12.27 μGy/day	12.01 μGy/day	2%	

B. Ehresmann et al., "Charged particle spectra measured during the transit to mars with the mars science laboratory radiation assessment detector (MSL/RAD)", Life Sci. Space Res., no. 10, pp. 29-37, 2016

RAD/MSL Geant4 detailed simulations

Before:

- Dose calculation with the ICRU sphere using spectra from SPENVIS for Earth exit and return, transit to Mars and Mars surface stay
- Geant4 simulation with just an Aluminium slab and expanded and aligned field to try to determine the shielding thickness that better reproduces results measured for RAD during transit to Mars: 10 g/cm2

Now:

- Detailed Geant4 simulation of RAD/MSL to validate published results for measured spectra
- Replicate previous spectra and obtained new spectra during transit and on Mars' surface
- Use published spectra results to re-do previous simulations using 2 phantoms:
 - O ICRU sphere
 - new ICRP reference (detailed) anthropomorphic models