Searches for stop production 8 & 13 TeV

<u>P. Bargassa</u>, C. da Cruz e Silva, D. de Bastos, L. Lloret

FUNDAÇÃO PARA A CIÊNCIA E A TECNOLOGIA MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

LIP Jornadas 16/02/2018

- Motivation for stop production
- "Landscape" for a Susy, stop search
- Innovations we (LIP-CMS) have brought to these searches
- Searches of stop in 2- & 3-body decays
 - > 8 TeV
- Searches of stop in 4-body decays
 - > 8 & 13 TeV
- Conclusions & perspectives

Motivation for stop production

$$M_{\tilde{t}}^{2} = \begin{pmatrix} \tilde{M}_{Q}^{2} + M_{T}^{2} + M_{Z}^{2}(\frac{1}{2} - \frac{2}{3}\sin^{2}\theta_{W})\cos 2\beta & M_{T}(A_{T} + \mu\cot\beta) \\ M_{T}(A_{T} + \mu\cot\beta) & \tilde{M}_{U}^{2} + M_{T}^{2} + \frac{2}{3}M_{Z}^{2}\sin^{2}\theta_{W}\cos 2\beta \end{pmatrix}_{\text{Up squarks}}$$

Mass difference of quark superpartners proportional to $M_Q = M_t$: Strong mixing in the stops $t_{1,2}$ sector ?

\mathbf{t}_1 might be the lightest squark

"Landscape" for a Susy/stop search

Cover as much mass hypothesis & decay scenarios as possible: **Be as model-independent as possible**

Innovations brought by LIP-CMS

- MVA approach for 3rd generation Susy searches
- ➤ Variation of signal versus Δm: Main parameter describing kinematically different signals

- → One MVA tool per each Δm of signal: Best selection for each signal hypothesis
- Quantitative rationale for including input parameters for MVA tool: Maximization of FOM: Obtain most reduced & best performing set of input variables

$$FOM = \sqrt{2((S+B)ln(\frac{(S+B)\cdot(B+\sigma_{B}^{2})}{B^{2}+(S+B)\cdot\sigma_{B}^{2}}) - \frac{B^{2}}{\sigma_{B}^{2}}ln(1+\frac{\sigma_{B}^{2}\cdot S}{B\cdot(B+\sigma_{B}^{2})}))}$$

2- & 3-body decays: 8 TeV 1 lepton final state

CM?

2- & 3-body decays: 8 TeV 1 lepton final state

Pedrame Bargassa - LIP

LIP-CMS manpower involved: 1 researcher + 1 postdoctoral fellow

- Responsable of signal selection
- Collaboration: 6 people involved through 3 institutes
- **Editorial:** Editor of the 8 TeV legacy paper:
 - * "Search for direct pair production of scalar top quarks in the singleand dilepton channels in proton-proton collisions at $\sqrt{s}=8$ TeV" JHEP 07 (2016) 027

Motivation for 4-body decays of stop

b

LIP-CMS manpower involved: 1 researcher collaborating with colleagues of Vienna

- Cut & Count approach
- Signal selection:
 - > Introduced new selection variables: $p_T(j)$, H_T , b-tag, $\eta(l)$
 - Optimization: Definition of signal regions
- * "Search for supersymmetry in events with soft leptons, low jet multiplicity, and missing transverse energy in proton-proton collisions at $\sqrt{s}=8$ TeV" Phys. Lett. B 759 (2016) 9-35

4-body decays: 13 TeV 1 lepton final state

- 8 different BDTs trained, 1 per each Δm . Same set of input variables
 - > $p_{T}(l)$, Q(l), $\eta(l)$,
 - > MET, M_T,
 - » N(jet), p_T(jet1), H_T,
- > N(b), $p_T(b)$, $\Delta R(l,b)$
- CSV(jet w high b-disc)

Premiere: 1st search to make a DD background prediction based on output of MVA

$$N_{\text{DDprompt}}^{\text{SR}}(X) = T_X \cdot N^{\text{CR}} =$$

4-body decays: 13 TeV 1 lepton final state

LIP-CMS manpower involved: 1 researcher + 1 postdoctoral fellow

- Entire MVA search
- Collaboration: 2 (LIP) + 4 Vienna
- **Editorial:** Editor of the draft paper:
 - * "Search for top squarks decaying via four-body or chargino-mediated modes in the single-lepton final state at $\sqrt{s} = 13$ TeV". Under CWR, to be sent to JHEP

- CMS-LIP had/has seminal contributions in searches of stop @ CMS
- > 2015-2018: Two published results, one coming
- Manpower @ LIP: 1 researcher +
 - > 2 postdoctoral fellows: L. Lloret, C. Da Cruz e Silva
 - 2 + 3 summer students in 2016 & 2017
- > Perspectives:
 - Search of stop in 4-body decays with MVA continues: Deep NN where we expect better results than with BDT
 - > D. de Bastos joined PhD programme through IDPASC
 - See poster
 - > Investing our MVA expertise in $H \rightarrow \tau\tau$ measurement... but that is another story

Back-up

BDT training: Internal parameters

Ntrees = 400: MinNodeSize = 2.5%: MaxDepth = 3: VarTransform = D

- Ntrees: Number of trees in BDT
- > MinNodeSize: Percentage of N_{s} or N_{B} @ which splitting of data stops
- MaxDepth: Maximal number of cut levels the BDT can reach
 - 2 last parameters: Stopping conditions of the training
- Optimal use of a BDT: "VarTransform=D"

Diagonalize the n-Dimensional space of input variables before feeding them to the BDT, for BDT to cut on them linearly. i.e. rotates the basis of variables along axis where more 1D discrimination is more present

<u>Internal parameters</u>: Optimized with a base set of variables to have best performance while no overtraining

Correlation Matrix (background)

Correlation Matrix (signal)

Selection for $\Delta m = 30$ **:** Input variables

SetBase1

- ► FOM(300,270)=6.34 @ BDT>0.36
- ► S=50.5
- ► B=17.0
 - Wjets1/2/3/4/5/6/7=0/2.3/3.9/3.8/ 3.6/0.5/0

BDT > x

Comparison with CC via σ^{exp} (UL)

CC

- Expected 50.0%: r < 0.5332</p>
- SetBase0
 - Expected 50.0%: r < 0.3135</p>
- SetBase1
 - Expected 50.0%: r < 0.2412</p>
- SetBase1 + CSV
 - Expected 50.0%: r < 0.2197</p>

1/ The σ^{exp}(UL) picture confirms the
FOM picture
2/ Even when taking the most reduced
set of variables (variables of CC
analysis = SetBase0), the BDT
performs better than CC
3/ The improvement across the 3 sets is
clear

