

Neutron Detectors

Luís Margato ^(a), Alberto Blanco ^(a), Andrey Morozov ^(a), Paulo Fonte ^(a, b), Luís Lopes ^(a),

Karl Zeitelhack^(c),

Carina Höglund^(d, e), Irina Stefanescu^(d), Richard Hall-Wilton^(d, f)

^(a) LIP-Coimbra, Departamento de Física, Universidade de Coimbra (PT)

- ^(b) ISEC Instituto Superior de Engenharia de Coimbra (PT)
- ^(c) TUM Heinz Maier-Leibnitz Zentrum (MLZ), FRM-II (DE)
- $^{\rm (d)}\,{\rm ESS}$ European Spallation Source ERIC (ESS) (SE)
- ^(e) Thin Film Physics Division, Linköping University (SE)

^(f) Mid-Sweden University, SE-85170 Sundsvall, Sweden (SE)

Science & Innovation with Neutrons in Europe in 2020

SINE2020 is a consortium of **18 partner** institutions from **12 countries**. Funded by the European Union through the **H2020** programme

SINE2020 objectives:

- Preparing Europe for the unique opportunities at the European Spallation Source (ESS)
- Developing the innovation potential of neutron Large Scale Facilities

L. Margato, JornadasLIP 2018, 16-18 February, Évora, Portugal

Main objectives of LIP:

Evaluate the potencial of B-10 RPCs for thermal neutron detectors

$$n + {}^{10}B \rightarrow ({}^{11}B)^* = \begin{cases} {}^{7}Li^* (0,84 \text{ MeV}) + {}^{4}He (1,47 \text{ MeV}) + \gamma (0.47 \text{ MeV}), Q = 2,31 \text{ MeV} (94\%) \\ {}^{7}Li (1,02 \text{ MeV}) + {}^{4}He (1,78 \text{ MeV}), Q = 2,79 \text{ MeV} \end{cases}$$
(6 %)

 $\sigma_{capture}$ = 3840 barns at 1.8Å

Firts Tests with neutrons at TUM-FRMII

Two ${}^{10}B_4C$ coated RPCs were tested:

- RPC-1: gas-gap width of 1 mm
- RPC-2: gas-gap width of 0.35 mm

Aluminum electrode coated with ${}^{10}B_4C$ of 2 μm thick

Results: PHS

Results: Plateau

Wide HV plateau > 500 V for both RPCs

RPC-1 (1.0 mm gas-gap)

RPC-2 (0.35 mm gas-gap)

Firts Tests with neutrons at TUM-FRMII

Results: Efficiency and Spatial Resolution

³He-Proportonal Counter was used as the reference detector (efficiency of 97 % at 4.7 Å)

- Cadmium slit of 0.2 mm
- Pitch of 0.5 mm

Firts Tests with neutrons at TUM-FRMII

40mm

TREF neutron beam line (λ = 4.7 Å)

RPC-2 : 2D Spatial Resolution

Cd Mask (1mm thick)

Multilayer Architecture Stack of 10 Double-Gap RPCs (20 layers of ¹⁰B₄C)

x 20 Layers of ¹⁰B₄C

Thin PCB with signal pickup strips 2D readout

Detector at FRMII/ TREFF - neutron beamline

Detection efficiency

A correction factor was applied using a Signal to BKG ratio extracted from the reconstructed events

³He-Proportonal Counter was used as the reference (efficiency of 97 % at 4.73 Å)

Cadmium Slit: 2 mm x 35

The counting rate was given by the trigger of each individual cathode: C1, C2, C3, ..., C10 Cathode area = 90 x 90 mm Readout area: 43 x 43 mm

Spatial resolution

Horizontal Slit: 0.075 mm x 16 mm FWHM (Y - direction) ~ 0.35 mm

Run208 (HV = -2.3 kV)

Obs.: Beam divergence ~30 μm

L. Margato, JornadasLIP 2018, 16-18 February, Évora, Portugal

Spatial resolution

Vertical Slit

Spatial resolution – Data processing with ANTS2

Centroid reconstruction: strongest signal strip and 4 neighbouring strips

There are both a systematic shift and random fluctuations in the profile positions.

Spatial resolution – Data processing with ANTS2

Centroid reconstruction: strongest signal strip and 4 neighbouring strips on each side

The **systematic shift** suggests **non-normality** of the beam to the RPCs of ≈0.4° (0.2 mm over 30 mm) The **misalignments** of the RPCs in the stack are about 0.05 mm.

Conditional optimization of B₄C converter layer thicknesses in ANTS2

- Equalize as much as possible the detection efficiency for all double-gap RPCs, keeping total efficiency as high as possible.
- Practical constrain: only 5 different converter layer thickness.

Summary

- Several B-10 RPCs prototypes were designed and three were tested on a thermal neutron beam at TUM-FRM II demonstrating sub-millimeter position resolution
- A multilayer detector with ten B-10 D-Gap RPCs was designed and assembled
- □ Tests with that detector at the FRMII /TREFF neutron beam have demonstrated:

The capability of the multilayer detectors to reach efficiency > 50%

The spatial resolution (<0.25 mm) is not worse than that measured for single-gap RPCs

□ Next steps:

Characterization of the gamma sensitivity

Introduction of advanced position reconstruction algorithms to improve linearity and uniformity of high-resolution reconstructed images

ANTS2 is being upgraded to include scattering of neutrons in all detector materials to evaluate its effect on the detector performance

Thank you for your attention

ANTS2 Simulations

Constanting Const

10B4C layers thickness optimization

ANTS2 Simulations

10B4C layers thickness optimization

