5D calorimetry to probe Electroweak Symmetry breaking at the HL-LHC

P. Ferreira da Silva (CERN) Tuesday 05/02/2018 3rd Lisbon mini-school on Particle and Astroparticle Physics

With the Higgs the standard model is now complete

With the Higgs the standard model is now incomplete

Corrections to Higgs mass from loops:

un-natural balance with the top quark in the SM

 \Rightarrow part of the clues are in the Higgs self-interaction and m_t

Tracing back from the early universe I

- A phase transition should occur for T_{EW} (~10⁻¹⁰s after the big bang)
 - strong first order transition is possible if $\langle \phi_C \rangle > T_{EW}$
 - in the SM this favours m_H<80 GeV but experimental evidence contradicts this

m_H~125 GeV is observed and cosmological remnants from the electroweak epoch exist

 \Rightarrow new physics coupling to H at the TeV scale? additional Higgs bosons?

Tracing back from the early universe II

• Running λ and m_H to the Planck scale : some tension regarding the vacuum stability

- experimentally $\delta M_H \sim 100 \text{ MeV}$ is within reach (10x smaller than theory prediction)
- how far can we get in the experimental sources: top quark mass and α_s ?

Testing the Higgs potential at the LHC

7

- Low cross sections for double Higgs production (<40 fb)
 - non-trivial backgrounds and competition with (y_t)² processes
 - nevertheless new physics may be contributing to it (new resonances, "low energy" tails)
 - Run 2 data testing O(20-30)x the SM expectations for triple H couplings

Higgs couplings reach: prospects

CMS Projection

- Higgs self-couplings long road ahead
 - HH @ 3σ after combinations

Theory needs to accompany - how far can we get?

Higgs couplings to bosons and fermions

• <5-10% (<10-15%) level end of HL-LHC (Run 2)

8

 $H \rightarrow \mu \mu$ measured with 5-8% uncertainty

expected uncertainty

LHC is a collider designed to test EWSB

- Initially designed to uncover what happens at the TeV energy scale: •
 - ensure coverage to produce a Higgs boson candidate •
 - maximal sensitivity below WW threshold •
 - favoured by indirect fits pre-LHC, confirmed in 2012 •
- Is it the SM Higgs? something should happen in polarized boson-boson scattering •

$$A(W^+W^- \rightarrow W^+W^-)$$

$$\rightarrow \frac{1}{v^2} \left[s + t - \frac{s^2}{s - m_H^2} - \frac{t^2}{t - m_H^2} \right] \sigma$$

$$q$$

$$q'$$

$$q'$$

$$(weak coupling) (strong coup$$

Ligga loog

Boson scattering and anomalous couplings

- Boson scattering topologies are sensitive to anomalous couplings
 - triple and quartic gauge couplings enter in the diagrams
 - typical t-channel signature: $t = (q_i q_f)^2 = -2|\vec{q_i}||\vec{q_f}|(1 \cos\theta) \Rightarrow \Delta\eta \gg 1$

\Rightarrow coverage in the forward region is crucial

10

Limits on quartic gauge couplings

11

July 2017		Channel	Linsite	(con	5
		Channel		10.4 fb ⁻¹	15 9 ToV
$f_{T,0} / \Lambda^4$		When	[-3.40+01, 3.40+01]	19.4 ID	8 ToV
.,.		700	[-1.60+01, 1.60+01]	20.3 fb ⁻¹	
		277 W/V~		20.3 fb ⁻¹	
		WV V Y		20.2 fb ⁻¹	
		VVVγ Zv	[-2.50+01, 2.40+01]	19.3 fb	
		<i>Ζ</i> γ Ζ ν	[-3.80+00, 3.40+00]	19.7 fb ⁻¹	8 TeV
		27	[-5.40+00, 2.90+00]	29.2 fb	8 TeV
		vvy		19.7 fD	
		SS VV VV		19.4 fb ⁻¹	8 Iev
		SS VVVV		35.9 fb	13 TeV
	I			35.9 fb -	
f_{T_1}/Λ^4		νν ν γ Ζ		20.2 fb	8 lev
1,1		<i>Ζ</i> γ	[-4.4e+00, 4.4e+00]	19.7 fb 1	8 lev
	렸	vvγ	[-3.70+00, 4.00+00]	19.7 fb ⁻¹	8 lev
		ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 lev
		ss WW	[-2.8e-01, 3.1e-01]	35.9 fb ⁻¹	13 IeV
	H		[-6.1e-01, 6.1e-01]	35.9 fb ⁻¹	13 lev
Γ_{T_2}/Λ^4		νννγ Ζυ	[-7.20+01, 7.20+01]	20.2 fb ⁻¹	8 lev
1,2		Ζγ	[-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 lev
		ννγ	[-1.1e+01, 1.2e+01]	19.7 fb ⁻	8 TeV
	High second s	ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻	8 TeV
	H. H	ss WW	[-8.9e-01, 1.0e+00]	35.9 fb ⁻¹	13 TeV
	H	ZZ	[-1.2e+00, 1.2e+00]	35.9 fb ⁻	13 TeV
f_{TE} / Λ^4	, -	Ζγγ	[-9.3e+00, 9.1e+00]	20.3 fb ⁻¹	8 TeV
1,5		WVγ	[-2.0e+01, 2.1e+01]	20.2 fb ⁻¹	8 TeV
	<u> </u>	Ψγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV
$- \sqrt{\Lambda^4}$		WVγ	[-2.5e+01, 2.5e+01]	20.2 fb ⁻¹	8 TeV
1,6 / 1	<u> </u>	Wγ	[-2.8e+00, 3.0e+00]	19.7 fb ⁻¹	8 TeV
$= /\Lambda^4$		WVγ	[-5.8e+01, 5.8e+01]	20.2 fb ⁻¹	8 TeV
1,7 ***		Wγ	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	8 TeV
$f_{\pi a} / \Lambda^4$	Н	Ζγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 TeV
1,8 ***	H	Ζγ	[-1.8e+00, 1.8e+00]	20.2 fb ⁻¹	8 TeV
	Н	ZZ	[-8.4e-01, 8.4e-01]	35.9 fb ⁻¹	13 TeV
$= 1/\Lambda^4$		Ζγγ	[-7.4e+00, 7.4e+00]	20.3 fb ⁻¹	8 TeV
T,9 / 1	н	Zγ	[-4.0e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	н	Ζγ	[-3.9e+00, 3.9e+00]	20.2 fb ⁻¹	8 TeV
	<u> </u>	ZZ	[-1.8e+00, 1.8e+00]	35.9 fb ⁻¹	13 TeV
-100	0	100	200)	30
	~	•	OGC Limita		$[T_{-1}]^{-4_1}$
		a		90% U.L	

 Extensive summaries of triple, quartic gauge couplings available @ <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC</u>

- Note: unitarity bounds are however strict on possible new physics contributions
 - decomposing the amplitude in partial waves (S, P, etc.)

$$A = 16\pi \sum_{l=0}^{\infty} (2l+1) P_l(\cos\theta) \mathbf{a}_l$$

contributions to each wave are therefore limited to

unitarity bounds $\sim 2-3$ leV ($\sim 10^{-4}$ smaller than current limits)

⇒ (much) more data is needed

Higgs as a portal

- Still a (experimental) large room for invisible Higgs decays: BR<0.24 @ 95%CL
 - significant changes in this BR could be due to new neutral particles : dark matter?
- It may also be that the Higgs sector is more complex and accompanied by partners
 - resonant associated (VH) and hh production, high-mass diboson resonances,

Dark matter and Higgs

• The limits on the invisible BR of the Higgs can be re-casted to limits dark matter production

m_N - nucleon mass ~0.939 GeV v=246/ $\sqrt{2}$ GeV (vev) f_N~0.326 central value for coupling (from lattice*) $\beta = \sqrt{1 - 4M_{\chi}^2/m_{H}^2}$. $\Gamma_{inv} = \Gamma_{SM} BR_{inv}/(1-BR_{inv})$ *PRD 81(2010) 014503, PRL 103(2009) 122002

Latest re-interpretations in terms of mediator-WIMP mass (see <u>CERN-LPCC-2016-001</u>)

Outstanding questions

@ middle of LHC Run 2

Electroweak symmetry breaking

- m_H natural or fine-tuned ?
- if natural: what new physics/symmetry?
- does it regularize the divergent V_LV_L crosssection at high $M(V_LV_L)$? new dynamics ?
- elementary or composite Higgs ?
- is it alone or are there other Higgs bosons ?
- origin of couplings to fermions
- coupling to dark matter ?
- does it violate CP ?
- cosmological EW phase transition

Physics at the highest E-scales:

- how is gravity connected with the other forces ?
- do forces unify at high energy ?

Dark matter

- composition: WIMP, sterile neutrinos, axions, other hidden sector particles, ...
- one type or more ?
- only gravitational or other interactions ?

Quarks and leptons

- why 3 families ?
- masses and mixing
- CP violation in the lepton sector
- matter and antimatter asymmetry
 baryon and charged lepton number violation

Neutrinos

- V masses, their origin H(125) role?
- Majorana or Dirac ?
- **CP** violation
- additional species?
- sterile v ?

Universe's accelerated expansion:

adapted. from I. Shipsey @ ICHEP2016 primordial: is inflation correct ? which (scalar) fields? role of quantum gravity?
today: dark energy (why is Λ so small?) or gravity modification ?

Road ahead for detector upgrades 17

Phase 0 2013-2014

Consolidate detectors, address operational issues, prepare for high pileup

- complete muon coverage, improve muon trigger, new smaller radius beam pipes
- Replace HCAL forward PMTs and outer HPD \rightarrow SiPM

Phase I 2018-2019

Maintain / improve performance at high pileup

• new pixels, HCAL SiPMs, electronics, and L1-Trigger

Phase II 2023-2024

Maintain / improve performance at extreme pileup : sustain rate + radiation doses

- New inner detector, new calorimeter electronics, muon extension, trigger and DAQ upgrade
- track trigger, replace endcap calorimeters

Detector strategies to mitigate pileup at HL-LHC

115

110

120

125

130

135

1

 $m_{_{\gamma\gamma}} \, (GeV) ~\sigma_{_{eff}}$ relative to S2 (GeV)

1.1

1.2

1.3

loose 30% in resolution with "tracker only" informat

 \Rightarrow up to 20% larger uncertainty in cross section

18

Particle flow as the reconstruction backbone

- Particle flow algorithms benefit from larger B.R
 - well separated tracks
 - reconstruct conversions, nuclear interactions, V⁰ decays
 - easier to link with calorimeter deposits
 - dedicated calibrations from identified π^+ ,K⁰, e, γ , μ

Particle flow performance

- >80% of the jet components are reconstructed using high resolution detectors
 - tracking: π^+ , K⁺ and other charged hadrons are approximately O(60%)
 - ECAL: by isospin symmetry $\pi \rightarrow \gamma \gamma$ contribute in second place with O(20%)

High Granularity Calorimeter

- A dense/compact sampling calorimeter with high lateral/longitudinal segmentation
- Total of 585m² of 8" Si sensors (≈3x CMS tracker area) + 480m² of Scintillator
 - 28 (24) layers with Cu/WCu/Pb (st. steel/Cu) absorbers used in ECAL (HCAL) sum to $26X_0$ (10.7 λ)

				Thermal screen
Active thickness	120	200	300	
Cell size [cm ²]	0.52	1.18	1.18	
η coverage	2.3-3	1.7-2.3	1.5-1.7	
C [pF]	50	65	50	
Bulk polarity	Р	Р	p / (n)	NTISE TO THE
Fluence [10 ¹⁵ n _{eq} /cm ²]	2.0-7.0	0.5-2.5	0.1-0.5	1-2.02 CE-E CE-#
Lifetime dose [M _{rad}]	100	20	3	n=2.931 n=3.0 → 15.0 → 15.0
S/N (initial→after 3 ab-1)	4.5→2.2	6→2.3	→4.7	2970 Thustreen Carter FH 560.6 "Off" 313.5 1995 Inst 31905 If first 31905 If first BH1000.8 3170.3 FH addree front BH1000.8 BH1000.8
				5231.6

Towards fine-grained particle flow at high pileup

Towards fine-grained particle flow at high pileup

Particle flow will naturally evolve towards the usage of machine learning algorithms.

Usage of time information

Module design

- 432ch module PCB layout
 - oblong holes are used for wirebonding
- 6" module prototype before wirebonding
 - readout with SKIROC2-CMS FE chips
 - used in beam tests

Rationale behind sensor/module design

- Hexagonal 8" sensors with DC-coupled pads
 - maximise available wafer area
 - reduce number of sensors produced / assembled
 - • vs cells factor ~ 1.3
 - 8" vs 6" sensors factor ~1.8

- Varying sensor thickness
 - only small effect on resolution (stochastic)
 - dictated by n fluence, for optimal performance

Simple, rugged module design, automated assembly

Prototyping examples: Si sensors available for testing

- Hamamatsu (HPK), Japan
 - ~200 6" used for beam tests
 - several 6" with different diffusion techniques, thicknesses, n and p-types, geometries, p-stop options
 - first 15 8" prototypes

- Infineon (IFX), Austria
 - 6" (n-type) and 8" (p-type) production for CMS tracker
 - 25 8" p-type prototypes

- Novati, US
 - 6" half sensors on 8" wafers
 - 8" sensors in production

Sensor testing for HGCAL on-going at CERN, HEPHY (Vienna), Fermilab (US)

Aim for close-to-final design by Summer 2018

Setup at CERN for sensor testing

Tests have been made so far with a manual probe station

- single/multi-point needle measurements
- dedicated probe-cards + switch card
- irradiation tests to be done this year
- LabView / python-based DAQ (GPIB)

240ch

28

Readout I

Readout II

Conclusions

- Still a long way to complete the LHC Physics Programme
 - cherry-picked some favourite examples on electroweak symmetry breaking

Higgs (self-)couplings, vector boson scattering and anomalous couplings

• but much more to explore ahead

- Detectors must be upgraded to step up with the increase in luminosity
 - higher radiation doses, up to 200 simultaneous pileup interactions
 - particle flow reconstruction driving the design of the upgraded CMS detector
 - HGCal providing the maximum information possible (E, x, t) using ~585m² of Si sensors

• Plenty of opportunities ahead: phenomenology, analysis, detector development!

Collisions at the LHC: a summary

Need to select 1 / 1013 events produced and reject pileup!

Sensor characteristics for ECAL/HCAL

Active thickness (μ m)	300	200	120
Area (m ²)	245	181	72
Largest lifetime dose (Mrad)	3	20	100
Largest lifetime fluence (n_{eq}/cm^2)	0.5×10 ¹⁵	2.5×10^{15}	7×10 ¹⁵
Largest outer radius (cm)	\approx 180	≈100	≈70
Smallest inner radius (cm)	≈100	≈70	≈35
Cell size (cm ²)	1.18	1.18	0.52
Initial S/N for MIP	11	6	4.5
Smallest $S/N(MIP)$ after 3000 fb ⁻¹	4.7	2.3	2.2

CE-E

	Scintillator	Si	Si
Sensor thickness	3 mm	300 µm	200 µm
Area (m ²)	480	71	15
Largest lifetime dose (Mrad)	<0.3	30	100
Largest lifetime fluence ($n_{eq}/cm^2)$	8×10 ¹³	5×10 ¹⁴	2.5×10^{15}
Largest outer radius (cm)	≈235	≈160	\approx 100
Smallest inner radius (cm)	≈90	≈ 80	≈45
Cell size (cm ²)	2×2 to	1.18	1.18
	5.5 imes 5.5		
Initial S/N for a MIP	≫5	11	6
Smallest $S/N(MIP)$ after 3000 fb ⁻¹	5	4.7	2.3

CE-H

Project timeline and milestones

Sensor design parameters and layout optimisation

- Cells are centred on uniform grid across detector
 - geometry is fully determined by very few parameters
 - TCAD package used to verify optimal design of the sensor
- Small interpad capacitance expected (<5 pF)
 - simulation with two diodes with 5µm metal overhang
 - other features being studied: p-stop type, inter-pad gap, dimensions between edge implant floating or grounded guard ring, etc.

36

Sensor characterisation

- Measure I-V and C-V curves for the prototype sensors
 - interpad capacitance and resistance
 - noise, charge collection efficiency

Measurement Contact		Procedure	Pros	Cons
Needle		Bias cell under test + direct neighbours	Flexible	Time consuming, no voltage applied to most pads
Probe-card		Bias all pads and switch channel under test with dedicated card	All pads biased Mocks-up real operation	Dedicated probecard per sensor, parasitic capacitances, initial alignment (when manual)

Example of detailed characterisation a sensor

- Characterisation of selected cells through needle measurements
 - open correction derived without bias on central cell (~50pF)
 - I-V curves show a peak and shoulder effect (also observed in Vienna)
 - C \approx 87 pF V_{dep} \approx 20V and d \approx 115 μ m

using point of max. curvature as initial estimate of V_{dep} and $d=\epsilon_0\epsilon_r A/C$ ignoring additional contributions to C

Leakage current examples @ IkV

39

Leakage current examples @ IkV

40

Readout III

