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Multi-messenger Astronomy

August 2017
GW170817 from Neutron Star Collision, seen by LIGO/Virgo

GRB170817 seen 1.7 seconds later by spaced-based y-ray observatories, Fermi and Integral
then also seen in ground-based observatories: 10 hours later in optical, 20 days later in X-rays

September 2017
IceCube high energy neutrino event
correlated with gammas observations at E>100 MeV (Fermi-LAT) and E>100 GeV (MAGIC)

1987A SuperNova, seen by KamiokaNDE-II, IMB, Baksan neutrino observatories
3 hours later seen by astronomers (even visible by naked eye)

SNEWS - the SuperNova Early Warning System started in 1999, automated in 2005

Qutline:
High energy observatories
=> knowing the messengers
=> Lower energy observatories




Sources and sky maps:
search for neutrinos with the GWs
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Astrophysical Journal Letters 850 (2017) L35

First binary neutron star merger detected in Gravitational Waves:

not seen in neutrinos, consistent with expectation for off-axis Gamma Ray Burst
>> All experiments will continue the Gravitational Waves fast follow-up programs



Catching high energy neutrinos (v)
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lceCube (1 km)3 in South Pole
Antares (Km3Net) + Baikal (GVD)

Equatorial
event appears in both samples
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Auger dedicated to air-showers



Catchlng high energy cosmic rays
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- Auger and TA are complementary

Secondary neutrinos and gammas
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Charged particles
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AMS installed in the ISS to identify isotopes and study propagation at lower energies
Auger needs to use the atmosphere as a calorimeter detector for very high energies



High energy sources:
Charged CRQ{I galactic plane (*center)

P

360 .

Science 357 (2017) 1266
smoothed map of very high energy charged cosmic rays

charged cosmic rays are deflected by magnetic fields but
at high energy (E > 8 x 1018 eV) directions are less isotropic

Auger results show they do not point to the galactic plane,
Instead seem to follow the extra-galactic matter distribution



The Pierre Auger Observatory

1 particle | km? / century --> 30 / year
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The Pierre Auger Observatory

1 particula/km?/século == 30 por ano
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The Pierre Auger Observatory:
fluorescence and surface detectors

PN->T...
70 = yy
Tr/T™ - uv

atmosphere =>
orescence light

e to ground =>
pread over km?




The Pierre Auger Observatory:
fluorescence and surface detectors

4 x 6 (+ 1 x 3) FD stations, imaging the (em) shower development in the atmosphere
1600 SD stations w/ 1500 m (& 750 m) spacing, sampling the lateral (em/mu) distributions

Water Cherenkov detector for high muon signals
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ldentifying the
messengers

Neutrinos can cross the all atmosphere

no neutrino candidates (E, _>>E,__ )

Auger

Photons are electromagnetic showers

gammas limited to <1% of the flux

Finding no neutrals for sky maps,
=> separate iron / proton showers

1 Iron (E) ~ N x Proton (E/ A)

(need more detailed studies)

Neutrinos? Photons? Nuclei (p— Fe)?

Main variables relate to
depth of shower maximum: Xmax = X1 + DX
particle content at ground: Signal = u + e/y
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Electromagnetic shower imaged,

indirectly a sum of all n° decays

Some muons arrive at ground,
directly from charged = decay points
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Particle physics
at observatories

cross-sections, ie mean free path
of neutrinos in the Earth and

of protons in the atmosphere

Detectors: Auger vs LHC
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FD = e.m.
SD=mu+em.
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Knowing the messengers:
present and future at Auger -/
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Knowing the messengers:
re-connecting to the LHC

efforts to extend observatory to lower energies, with extra FD, infill SD, and muon counters

- -
preparing MARTA engineering array

exploring LIP's RPC technology Twm stations in the center

identify single muons .‘ -' -. '

measure their enerqy spectrum™. /
9y sp Area = 1.46 km2/

(using 256 cells/station)

efl: E
g

150 =

100 S
Ij E 1000 events of 101’ eV/month

LATTES will use similar detector for y-ray showers
’ but there the RPCs will be above the water tanks

Hexagonal unitary cell (baseline design)

(next talk on RPCs; MARTA & LATTES in two days)



Knowing the messengers (history):
neutrlnos IN cosmic ray showers
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Knowing the messengers (history):
solar neutrlno problem and solution
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Direction sensitivity from electron scattering in water Cherenkov detector:
only 50% of the expected flux (recently SK measured day/night difference)

Need to separate the different neutrino types, with new interactions and detectors:
SNO measured Charged and Neutral Current interactions in (salted) heavy water

>> the total number of neutrinos (NC) is as expected in Standard Solar Model,
>> the number of electron neutrinos (CC) is just one third of the expected

Neutrinos change flavor (ve,vu,vt), oscillating from production to detection



Neutrino Oscillations: (Hands on tomorrow)
guantum mechanics of mass mixing

“‘ ( i /P( /]\{ ). (E, M)
E2=P2+M?2
% WJA
For pmpagatlon Dnly energy and mass are relevant L=c.Time

For interaction, only the energy and flavor are relevant

Each mass has a combination of different interaction flavors
and each flavor has a combination of the different masses

M, and M,
at production
and detection

- -
L=c.Time
(interaction in matter can be seen as inducing an effective mass)



neutrino mixing I1s known
neutrino mass Is (still) unknown

Oscillation frequencies depend of squared mass differences
Oscillation amplitudes depend on similarity of mass mixing in each flavor

3 flavors of neutrinos ( @& anti-neutrinos Q) for 3 mass values

E ~ MeV E ~ GeV
solar oscillations (12)

Sun @ °m*~107°eV? 8~307 @ Cosmicrays &

Reactor O - 6, Accelerators
1 km /100 km 250 km / 700 km

atmospheric oscillations (23)

small oscillations (13) AmM2~10-3 eV/2. §~45°

Am~1073 eV?, 8<10°

Needs very Tau identification only
high fluxes at very high energy

human made beams confirmed discovery of observatories and added precision
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back to neutrino observatories:
HE sources, SN, Sun and Earth
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Solar v and Geo v

Nuclear Fusion Nuclear Fission
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The SNO+ neutrino experiment

20 '.,!_Hu deep @ SNDLAB Canada

Follows / reuses hardware from

Sudbury Neutrino Observator
= (2015 Nobel prize for

solar neutrino oscillations)

9300 PMTs, 8.5 m away from centre

12 m diameter transparent sphere
holding 750 ton of active medium:

heavy water -> liquid scintillator
make lower energy events visible

loaded with 1.3 tons of 3%9Te

Still an observatory but now
focusing on neutrino mass!



Neutrino mass origin
neutrinoless double beta decays ??

Oscillations => neutrinos have mass / Beta decays => it is very, very small
A different mechanism for mass? Are neutrinos Majorana particles?
A few isotopes have 2v[p, if v=v also Ov[3]

mass bands from neutrino oscillation parameters
10°E

Very rare process (T1/2~ 102° yrs)
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Particle, geophysics and astrophysics with anti-neutrinos

% of [
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* tagging of a delayed coincidence 0= _
* |dent|f|_cat|c:n of gamma and positron ¢ttt S
* reduction of neutron backgrounds Nu E {MeV)

~ 100 v/ year from reactors

* I .
and again the energy resolution Oscillation signals @ 250 km, 350 km

~ 20 [ year from U/Th in the Earth
measured only in Japan and Italy,

In addition to the Ov[3p search disentangle crust / mantle in global analysis
SNO+ is also an Observatory!

~ several / day in pre-supernova phases
monitor rate changes in an automated way

Currently in commissioning phase
not favorable for anti-nu detection

but could already catch a SuperNova ~many v/ minute in a supernova explosion
neutrinos arrive 3 hours before light: SNEWS!




Present SNO+
and near future

2017-2018
Taking data with water filled detector

PMT / optical detector calibration,
external background measurements,

exercise data taking and analysis methods (talk on wedesday about
data analysis in SNO+)

2018: Fill detector with pure scintillator

scintillator optical properties and lower energy backgrounds,
start of the low energy non-33 physics measurements

2019 — 2024: Tellurium loaded scintillator for B analysis
If OvBp is found
>> proves that neutrinos are Majorana particles,
>> shows that the neutrino mass hierarchy is inverted,
>> places an upper bound on the absolute mass scales
>> would first need to confirm the results with different isotopes



Outlook

Multi-messenger astronomy is speeding up

Knowing the messengers is key for astrophysics analysis

Particle physics at observatories extends accelerator measurements
* first by providing the first beams and evidence for e™, u, m, ...

* |ater providing intense neutrino beams traveling large distances
and allowing the discovery of neutrino oscillation, mixing and mass

* now by providing particle interaction properties at higher energies
Many open questions remain to be answered

* from the sources of the highest energy cosmic rays
to the most fundamental properties of neutrinos

thank you for your attention!



Cosmic ray showers
detection techniques

\\ particle shower formed by interaction in atmosphere nuclei
\ P(N)+AIr- ntt n~ n°...
)
\
\ High energy charged pions interact feeding the shower

T/~ — LLV: muons can be detected at ground

most ground signal from electrons
* sampled by detector ground arrays

71:0 — YY: 90% of the energy in electromagnetic shower

| Isotropic fluorescence light from excited N2
~and Cherenkov light in shower’s direction

* imaged by telescopes in clear nights

Ground sampling proposed by Pierre Auger
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SNOLAB: a deep and clean underground laboratory

£l
- 50x10° less muons at -2000 m!
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