Cosmic Ray and Neutrino Observatories

Sofia Andringa LIP

3rd Lisbon School on Particle and Astroparticle Physics, Feb. 2018

Multi-messenger Astronomy

August 2017 GW170817 from Neutron Star Collision, seen by LIGO/Virgo GRB170817 seen 1.7 seconds later by spaced-based γ -ray observatories, Fermi and Integral then also seen in ground-based observatories: 10 hours later in optical, 20 days later in X-rays

September 2017 IceCube high energy neutrino event correlated with gammas observations at E>100 MeV (Fermi-LAT) and E>100 GeV (MAGIC)

1987A SuperNova, seen by KamiokaNDE-II, IMB, Baksan neutrino observatories 3 hours later seen by astronomers (even visible by naked eye)

SNEWS – the SuperNova Early Warning System started in 1999, automated in 2005

<u>Outline</u>: High energy observatories => knowing the messengers => Lower energy observatories

Sources and sky maps: search for neutrinos with the GWs

Astrophysical Journal Letters 850 (2017) L35

First binary neutron star merger detected in Gravitational Waves:

not seen in neutrinos, consistent with expectation for off-axis Gamma Ray Burst >> All experiments will continue the Gravitational Waves fast follow-up programs

Catching high energy neutrinos (v)

IceCube (1 km)³ in South Pole Antares (Km3Net) + Baikal (GVD)

Auger dedicated to air-showers

Catching high energy cosmic rays

 $pN \rightarrow \pi^+ \pi^- \pi^0 ...$

Secondary neutrinos and gammas can better point to the sources

 $\begin{array}{l} \pi^{+}/\pi^{-} \rightarrow \mu\nu \\ \pi^{0} \rightarrow \gamma\gamma \end{array}$

* background from charged CR* lower energy, less transparency

Gamma IACTs and Arrays in Northern hemisphere CTA and LATTES proposed for Southern hemisphere (in addition to the space-based γ telescopes)

AMS installed in the ISS to identify isotopes and study propagation at lower energies Auger needs to use the atmosphere as a calorimeter detector for very high energies

The Pierre Auger Observatory

1 particle / km² / century --> 30 / year

Malargüe, Mendoza, Argentina

The Pierre Auger Observatory

1 partícula/km²/século == 30 por ano

----> Lisboa, Portugal

The Pierre Auger Observatory: fluorescence and surface detectors

The Pierre Auger Observatory: fluorescence and surface detectors

4 x 6 (+ 1 x 3) FD stations, imaging the (em) shower development in the atmosphere 1600 SD stations w/ 1500 m (& 750 m) spacing, sampling the lateral (em/mu) distributions

Identifying the messengers

Neutrinos can cross the all atmosphere so look for horizontal "young" showers (ie, still close to electromagnetic X_{max}) **no neutrino candidates (E_{Auger} >> E_{IceCube})**

Photons are electromagnetic showers w/ less muons and closer to the ground (but less different from usual showers) gammas limited to <1% of the flux

Finding no neutrals for sky maps, => separate iron / proton showers

1 Iron (E) ~ N x Proton (E / A) iron showers develop *faster* with *many more* muons and *much less* fluctuations *(need more detailed studies)* Main variables relate to depth of shower maximum: Xmax = X1 + DX particle content at ground: Signal = $\mu + e/\gamma$

Neutrinos? Photons? Nuclei (p – Fe)?

iteactines, i notoris, nact

Particle physics at observatories

cross-sections, ie mean free path of neutrinos in the Earth and

of protons in the atmosphere

Knowing the messengers: present and future at Auger

1/N_{evt} dN/dX

0.01

0.005

mu

em

Knowing the messengers: re-connecting to the LHC

efforts to extend observatory to lower energies, with extra FD, infill SD, and muon counters

(next talk on RPCs; MARTA & LATTES in two days)

Knowing the messengers (history): neutrinos in cosmic ray showers

2. Lower energy observatories

Knowing the messengers (history): solar neutrino problem and solution

Direction sensitivity from electron scattering in water Cherenkov detector: only 50% of the expected flux (recently SK measured day/night difference)

Need to separate the different neutrino types, with new interactions and detectors: SNO measured Charged and Neutral Current interactions in (salted) heavy water

>> the total number of neutrinos (NC) is as expected in Standard Solar Model, >> the number of electron neutrinos (CC) is just one third of the expected

Neutrinos change flavor (v_e, v_u, v_τ), oscillating from production to detection

Neutrino Oscillations: (Hands'on tomorrow) quantum mechanics of mass mixing

(interaction in matter can be seen as inducing an effective mass)

neutrino mixing is known neutrino mass is (still) unknown

Oscillation frequencies depend of squared mass differences Oscillation amplitudes depend on similarity of mass mixing in each flavor

3 flavors of neutrinos (& anti-neutrinos) for 3 mass values

human made beams confirmed discovery of observatories and added precision

back to neutrino observatories: HE sources, SN, Sun and Earth

Solar v and Geo \overline{v} Nuclear Fusion Nuclear Fission L~ 10¹² /(cm².s) L~ 10⁶ /(cm².s)

The SNO+ neutrino experiment

Follows / reuses hardware from <u>Sudbury Neutrino Observatory</u> (2015 Nobel prize for solar neutrino oscillations)

9300 PMTs, 8.5 m away from centre

12 m diameter transparent sphere holding 750 ton of active medium:

heavy water -> liquid scintillator

make lower energy events visible

loaded with 1.3 tons of 130Te

Still an observatory but now focusing on neutrino mass!

Neutrino mass origin neutrinoless double beta decays ??

Oscillations => neutrinos have mass / Beta decays => it is very, very small

A different mechanism for mass? Are neutrinos Majorana particles?

A few isotopes have $2\nu\beta\beta$, if $\nu=\overline{\nu}$ also $0\nu\beta\beta$

Particle, geophysics and astrophysics with anti-neutrinos

* tagging of a delayed coincidence
* identification of gamma and positron
* reduction of neutron backgrounds
* and again the operative recolution

* and again the energy resolution

In addition to the $0\nu\beta\beta$ search SNO+ is also an Observatory!

Currently in commissioning phase not favorable for anti-nu detection but could already catch a SuperNova

<u>~ 20 / year from U/Th in the Earth</u> measured only in Japan and Italy, disentangle crust / mantle in global analysis

<u>~ several / day in pre-supernova phases</u> monitor rate changes in an automated way

~ many v / minute in a supernova explosion neutrinos arrive 3 hours before light: SNEWS!

Present SNO+ and near future

2017-2018 Taking data with water filled detector

PMT / optical detector calibration, external background measurements, exercise data taking and analysis methods

2018: Fill detector with pure scintillator

scintillator optical properties and lower energy backgrounds, start of the low energy non- $\beta\beta$ physics measurements

2019 – 2024: Tellurium loaded scintillator for $\beta\beta$ analysis *If* $0\nu\beta\beta$ is found

>> proves that neutrinos are Majorana particles,

>> shows that the neutrino mass hierarchy is inverted,

>> places an upper bound on the absolute mass scales >> would first need to confirm the results with different isotopes

(talk on wedesday about data analysis in SNO+)

Outlook

Multi-messenger astronomy is speeding up

Knowing the messengers is key for astrophysics analysis

Particle physics at observatories extends accelerator measurements

* first by providing the first beams and evidence for e⁺, μ , π , ...

- * later providing intense neutrino beams traveling large distances and allowing the discovery of neutrino oscillation, mixing and mass
- * now by providing particle interaction properties at higher energies

Many open questions remain to be answered

* from the sources of the highest energy cosmic rays to the most fundamental properties of neutrinos

thank you for your attention!

Cosmic ray showers detection techniques

 π^{0}

particle shower formed by interaction in atmosphere nuclei $p(N)+Air \rightarrow \pi^+ \pi^- \pi^0...$

High energy charged pions interact feeding the shower $\pi^+/\pi^- \rightarrow \mu\nu$: muons can be detected at ground most ground signal from electrons * sampled by detector ground arrays

→ γγ: 90% of the energy in electromagnetic shower isotropic fluorescence light from excited N2 and Cherenkov light in shower's direction * imaged by telescopes in clear nights

Ground sampling proposed by Pierre Auger

Sources and the sky maps

Protons/Nuclei + Matter == > Pions $\pi^{0} \rightarrow \gamma \gamma$ $\pi^{-} \rightarrow \mu \nu$

- At high energy charged particle
 directions become less isotropic
- Auger results show they do not point back to the galactic plane,
- ^{-1.50} instead they seem to follow the -3.00 extra-galactic matter distribution

km⁻² sr⁻¹

SNOLAB: a deep and clean underground laboratory

50x10⁶ less muons at -2000 m! 100 / day in 20m x 20m hall

Scintillator and tellurium are stored in the clean lab underground for a few years

Measuring and constraining cosmogenic backgrounds

