Upgrading the CMS detector for new physics

- Physics search: The search for the lightest Susy
- State of the art tool for searches: Machine Learning
- > Detector upgrade: The CTT-PS sub-detector of CMS

CMS collaboration, LIP - Lisbon

SUperSYmmetry: What is it How do we search for it ...how do we work

Dr. Pedrame Bargassa CMS collaboration, LIP - Lisbon

Pedrame Bargassa - LIP

SUperSYmmetry: What it is

Pedrame Bargassa - LIP

SUSY: Why it is worth searching for

- Elegantly unifies Electro-magnetic, weak & strong nuclear interactions
- Has natural candidates for the Cold Dark Matter

 (by definition) Solves the quadratic divergence in the mass of the (lightest ?) Higgs boson

Pedrame Bargassa - LIP

SUSY search: One of our best bets

Mass difference of squarks: Proportional to $M_Q = M_t$: Strong mixing in the stops $\tilde{t}_{1,2}$ sector \tilde{t}_1 might be the lightest squark

Data on Cold Dark Matter: $\Omega_{CDM}h^2 = 0.11 \pm 0.01 @ 95\%$ CL (WMAP) Gives preference to $\Delta m = M(\tilde{t_1}) - M(\tilde{\chi_1}^0) \le 50$ GeV/c² Gives preference to 4-body decays

SUSY: How do-we search for it

 Collide protons: Produce higher mass particles

Sign wanted events

- Here, we are looking for events with **4 jets, 1 lepton** & **missing energy**
- **Careful !** SM does imitate this **signature** while not being Susy...
- Each measurable quantity in this event might be a precious source of information, i.e. disentangle between Signal & Background

SUSY search: Example of a challenge

We have to consider all mass possibilities for the 2 unknowns of this search:

> Scan through the mass plane & search for all kinematic signatures of the same signal

SM particles: We

- Know them
- > Measure them in the detector

SUSY particles: We don't know them ! i.e. we don't know their mass → Affects all the kinematics of the reconstructed events...

How do-we search for it

 Characterize signal versus background events in any possible measurable

CMS

Some 21 other discriminating variables...

How do we search for it: Multi-Variate Analysis tool

- Be smart in separating Signal from Background: Feed our best knowledge to a <u>Multi-Variate Analysis</u> tool, which combines the separation capacity of all variables:
 - Not only in 1 dimensional space...
 - ...but also in 2 dimensional : Makes use of the differences of correlation btween S & B

How do we search for it: MVA tool

- Be smart in separating signal from background: Feed your best knowledge of these to a <u>Multi-Variate Analysis</u> tool, which combines the separation capacity of all single variables
 - Now compare the separation capacity between :-)

How do we search for it: MVA tool

- We have to be realistic: Account for:
 - > Abundance of production of SM background & our possible signal

Here is the real picture ;-)

- Reconstruction efficiencies
- Detector effects...

XP / NP (N/L)

How do-we work: Tools / Methods / Environment

Code: You will be using & contributing to code being used by O(10³) physicists:

Highly prized in HEP, but also in industry, financing

Statistical analysis

Essential in HEP, highly prized in financing

Data analysis: Your capacity to understand data & find 1 interesting event out of O(10⁴,10⁶)

@ this level, you should be good for a job in HEP, in industry or banks

Working in team:

- Large collaboration: ~2500 people
 - > Physics groups / sub-groups: 10 / 200 people
- LIP: Students helped by senior researchers & post-doctoral fellows
- "Can I bring something as student ?"
 - Yes: 2 summer students of 2nd-3rd year helped us improve the selection power of our MVA tool !
- Dedicated courses to help our students in (all) these aspects: http://www.idpasc.lip.pt/LIP/events/2016_lhc_physics/

Contact me: bargassa@cern.ch

Applications of Machine Learning to particle physics

Giles Strong

LIP Mini-school of particle physics, Oeiras- 07/01/18

giles.strong@outlook.com

twitter.com/Giles C Strong

amva4newphysics.wordpress.com

What is machine learning?

What is machine learning?

Automated model building

FEATURES

Which properties do you want to feed in?

Simple High-energy example physics

Simple High-energy example physics

Data and desired outputs are more complex

Underlying principle is the same

Event classification

- Search for rare processes by predicting what process occurs in a particle collision
- E.g. Di-Higgs production -<u>1708.04188</u>

Mass regression

- Predict the mass of a decayed particle from knowledge of its decay products
- E.g. Higgs to tau tau -<u>AMVA4NP:WP1-D1</u>

Reduce systematic uncertainties

- Use *adversarial training* to build classifiers which are immune to unknown model parameters
- Helps improve inference of other model parameters, e.g. cross-section of a particular process
- E.g. Learning to Pivot with Adversarial Networks and Adversarial learning to eliminate systematic errors: a case study in High Energy Physics

Figure 2: Toy example. (Left) Conditional probability densities of the decision scores at $Z = -\sigma, 0, \sigma$ without adversarial training. The resulting densities are dependent on the continuous parameter Z, indicating that f is not pivotal. (Middle left) The associated decision surface, highlighting the fact that samples are easier to classify for values of Z above σ , hence explaining the dependency. (Middle right) Conditional probability densities of the decision scores at $Z = -\sigma, 0, \sigma$ when f is built with adversarial training. The resulting densities are now almost identical to each other, indicating only a small dependency on Z. (Right) The associated decision surface, illustrating how adversarial training bends the decision function vertically to erase the dependency on Z.

Jet physics

- Use convolutional and recurrent networks to classify jets according to origin process: <u>DeepJet</u>
- Recluster event using QCD-aware recursive networks to provide jet embeddings: <u>QCD-Aware Recursive</u> <u>Neural Networks for Jet Physics</u>

FIG. 2. QCD-motivated event embedding for classification. The embedding of an event is computed by feeding the sequence of pairs $(\mathbf{v}(t_j), \mathbf{h}_1^{\text{let}}(\mathbf{t}_j))$ over the jets it is made of, where $\mathbf{v}(\mathbf{t}_j)$ is the unprocessed 4-momentum of the jet \mathbf{t}_j and $\mathbf{h}_1^{\text{let}}(\mathbf{t}_j)$ is its embedding. The resulting event-level embedding $\mathbf{h}_M^{\text{event}}(\mathbf{e})$ is chained to a subsequent classifier, as illustrated in the right part of the figure.

Many possible applications

Jet tagging

Event classification

Event triggering

Kinematic regression

Simulation

Detector design

Particle ID

Inference

Further reading

- Play in browser: <u>Tensorflow playground</u>, <u>gradient boosting playground</u>
- Seminars and lectures: <u>MLHEP-17</u>, <u>Karpathy</u>, <u>Hastie</u>, <u>HEP repository</u>
- My resources: <u>NN summary posts</u>, <u>example classifier</u>

The forward detector of CMS

C. da Cruz e Silva

LIP, Lisbon, Portugal

07/02/2018

C. B. da Cruz e Silva

The CMS-Totem Precision Proton Spectrometer

- ► Focuses on a special-class of interactions at the LHC
 - ► Use the LHC as a photon/gluon collider
 - ► The forward protons are scattered at small angles

- ► Use LHC magnets as a proton spectrometer:
 - Need detectors very close to the beamline: ~3-4 mm

p

- ► CT-PPS has been in operation since 2016
- Results with 2016 data have been published, proving that such a detector can successfully operate in high luminosity conditions
- ► LIP has had a strong involvement in CT-PPS:

- ► CT-PPS is a new detector:
 - Still under active development: This year (2018) an old sub-detector is being replaced for a different type of detector
 - Trigger systems under active development
- ► Physics analysis:
 - ➤ Initial state has well defined quantum numbers → strong constraints on the properties of the final state
 - Study quartic gauge interactions (γγ→WW), searching for deviations from the SM
- ► CT-PPS operates very close to the beam:
 - ► Devices have to sustain high doses of radiation → Using new detector systems
 - ➤ Some detectors currently used in CT-PPS are being considered for the upgrades for HL-LHC in CMS → CT-PPS provides the opportunity to acquire experience in these new systems

Backup

Particles... Interactions... wait a minute...

F	ERMI	ONS	matter constituents spin = 1/2, 3/2, 5/2,				
Leptor	15 spin	= 1/2	Quarks spin = 1/2				
lavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge		
electron e neutrino electron	<1×10 ⁻⁸	0	U up d down	0.003	2/3 -1/3		
, muon μ neutrino	<0.0002	0	C charm	1.3	2/3		
<i>t</i> muon	0.106	-1	S strange	0.1	-1/3		
τ tau τ neutrino	< 0.02	0	t top	175	2/3		
tau	1.7771	-1	b bottom	4.3	-1/3		

	BO	SONS	1	force carrier spin = 0, 1, 1	s 2,		
Unified Electroweak spin = 1				Strong (c	S	oin = 1	
Name	Mass GeV/c ²	Electric charge		Name	Mas GeV/	s c²	Electric charge
γ photon	0	0		g gluon	0		0
w-	80.39	-1		Higgs Boson spin = 0			
W+	80.39	+1		Name	Mas GeV/	s c ²	Electric charge
Z ⁰ Z boson	91.188	0		H Higgs	126	5	0

Why would matter exist only in fermionic, and force carriers exist only in bosonic form in the universe ?

Is this a "happens to be" ? Or there is a hidden symmetry behind this ?

Let's symmetrize things between matter & interaction fields...

sParticles are special:

<u>If</u> SUSY exists, it's a broken symmetry:

- Physical sParticles are mixtures of Susy particles
- They exist @ higher masses

Among all sParticles: Which one is our best bet ?

Introduction: Motivations for production & decay

$$M_{\tilde{t}}^{2} = \begin{pmatrix} \tilde{M}_{Q}^{2} + M_{T}^{2} + M_{Z}^{2} (\frac{1}{2} - \frac{2}{3} \sin^{2} \theta_{W}) \cos 2\beta & M_{T} (A_{T} + \mu \cot \beta) \\ M_{T} (A_{T} + \mu \cot \beta) & \tilde{M}_{U}^{2} + M_{T}^{2} + \frac{2}{3} M_{Z}^{2} \sin^{2} \theta_{W} \cos 2\beta \end{pmatrix}$$

Mass difference of quark superpartners proportional to $M_Q = M_t$:

Strong mixing in the stops $\boldsymbol{t}_{\!\scriptscriptstyle 1,2}$ sector ?

\mathbf{t}_1 might be the lightest squark

$$\Delta m = M(t_1) - M(\chi_1^0) \le 50 \text{ GeV/c}^2:$$

Compatible with $\Omega_{CDM}h^2 = 0.11 \pm 0.01$ @ 95% CL $\frac{1}{2}$ (WMAP) Kinematically closes 3- & most of 2-body decays

SUSY

Higgs field introduces huge divergences in the mass of all known SM particles

But: Are we mass-instable ? Fortunately not ;-)

There has to be another theory which stabilizes masses

 $-\frac{g_S^2}{4\pi^2} \Big(\Lambda^2 + m_S^2\Big)$

SUSY cures the divergences of the SM <u>by definition</u>: Associates a scalar partner (-) to each SM fermion (+)

SUSY

Has natural candidate(s) for the Cold Dark Matter

Sneutrino: Susy partner of the neutrino v Neutralino: Mixture of partners of neutral SM bosons

