Upgrading the CMS detector for
new physics

- Physics search: The search for the lightest Susy
- State of the art tool for searches: Machine Learning
- Detector upgrade: The CTT-PS sub-detector of CMS

CMS collaboration, LIP - Lisbon



SUperSYmmetry:

What is it
How do we search for it
...how do we work

Dr. Pedrame Bargassa
CMS collaboration, LIP - Lisbon
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SUperSYmmetry: What it is

Standard particles SUSY particles

Higgsino

' Quarks ’ Leptons 0 Force particles Squarks \_) Sleptons o SUSY force
particles

Matter fields could also exist in bosonic form |
Force carriers also exist in fermionic form

SUSY: )
Simple spin symmetrization T K
between what we know of matter| e
& force carrier fields/particles 5
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SUSY: Why it is worth searching for

- Elegantly unifies Electro-magnetic,
weak & strong nuclear interactions

- Has natural candidates for the
Cold Dark Matter

Unlverse content

vus:ble mcﬁ’er 5%

dark matter 27%

. M EESENE————
dark energy 68%

(by definition) Solves the
quadratic divergence in the mass
of the (lightest ?) Higgs boson
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SUSY search: One of our best bets

Mass

+

Mass difference of squarks: A T

Proportional to M 0= M, :

!

Strong mixing in the stops t, , sector

(@]

N

!

61 might be the lightest squark)

@]
_

!

(s

=

SM SUSY

Data on Cold Dark Matter:

anmhz = 0.11 = 0.01 @ 95% CL (WMAP)
Gives preference to

Am = M(t,) - M(x°,) = 50 GeV/c?

Gives preference to 4-body decays ;
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SUSY: How do-we search for it

MontBlanc

e S
b L et

- Collide protons: Produce
higher mass particles

- Sign wanted events

M

- Here, we are looking for events with
4 jets, 1 lepton & missing energy

> Careful ! SM does imitate this
signature while not being Susy...

- Each measurable quantity in this event might be a precious source
of information, i.e. disentangle between Signal & Background

Pedrame Bargassa - LIP 6



SUSY search: Example of a challenge
- SM particles: We

P > Know them
> Measure them in the detector
- SUSY particles: We don't know
them ! i.e. we don't know their mass
— Affects all the kinematics of
the reconstructed events...
p szoo
S
&80
éGO
é§40
- We have to consider all mass 320

possibilities for the 2 unknowns of
this search:

Scan through the mass
plane & search for all 60
kinematic signatures of the
same signal

100

80

40 LEP excluded

50 100 150 200 250 300
Scalar top quark mass [GeV/c?]
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How do-we search for it

10

102

10_3 Lol

Characterize signal versus background events

in any possible measurable
CMS
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Some 21 other discriminating variables...
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How do we search for it: Multi-Variate Analysis tool

- Be smart in separating Signal from Background: Feed our best
knowledge to a Multi-Variate Analysis tool, which combines the
separation capacity of all variables:

- Not only in 1 dimensional space...
> ...but also in 2 dimensional : Makes use of the differences of

correlation btween S & B

Correlation Matrix (background)

Linear correlation coefficients in %
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Correlation Matrix (signal)

Linear correlation coefficients in %
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How do we search for it: MVA tool

- Be smart in separating signal from background: Feed your best
knowledge of these to a Multi-Variate Analysis tool, which combines the
separation capacity of all single variables

- Now compare the separation capacity between :-)

Here... ...and here: All the discriminating
power of the MVA tool in 1 variable !
4 - o N\
- TMVA overtraining check for classifier: BDT
:'t't T 3-5 ] 1 ] ] 1 1 1 1 1 1 Ll 1 ] 1 I ) 1
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How do we search for it: MVA tool

- We have to be realistic: Account for:
- Abundance of production of SM background & our possible signal
> Reconstruction efficiencies

- Detector effects... Here is the real picture ;-)
TMVA overtraining check for classifier: BDT BDToutput
% 3 I Signat st sampie) | [+ Signat fraining smpie) " 1 1 f )
= ) -/ Background (test sample) | | » Background (training sample) 10 g — —
; - Kolmogorov-Smirnov test: signal (background) probability = 0.003 (0.058) - R -
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If something shows up here, in Data:

Discovery !
Pedrame Bargassa - LIP 11



How do-we work: Tools / Methods / Environment

>

Code: You will be using & contributing to code being used by O(10°)
physicists:

Highly prized in HEP, but also in industry, financing
Statistical analysis
Essential in HEP, highly prized in financing

Data analysis: Your capacity to understand data & find 1 interesting
event out of O(10%10°)

@ this level, you should be good for a job in HEP, in industry or banks
Working in team:
- Large collaboration: ~2500 people
- Physics groups / sub-groups: 10 / 200 people
- LIP: Students helped by senior researchers & post-doctoral fellows
“Can I bring something as student ?”

- Yes: 2 summer students of 2"-3™ year helped us improve the selection
power of our MVA tool !

Dedicated courses to help our students in (all) these aspects:
http://www.idpasc.lip.pt/LIP/events/2016 lhc physics/

Contact me: bargassa@cern.ch

Pedrame Bargassa - LIP 12


http://www.idpasc.lip.pt/LIP/events/2016_lhc_physics/

Applications of Machine
Learning to particle
physics

Giles Strong
LIP Mini-school of particle physics, Oeiras- 07/01/18

giles.strong@outlook.com

twitter.com/Giles C Strong

amvasnewphysics.wordpress.com



mailto:giles.strong@outlook.com
https://twitter.com/Giles_C_Strong
https://amva4newphysics.wordpress.com/

What is machine learning?



What is machine learning?

Automated model building
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Is a point here
blue or orange?




FEATURES

Which properties do
you want to feed in?

Low-level
information - X and
Y coordinates



Flexible system to
learn map between
inputs and target
X, Y -> blue/orange
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Simple _ High-energy
example physics




Simple _ High-energy
example physics

Data and desired outputs are
more complex

\ Underlying principle is the same




Event classification

CMS 3591713 TeV)
[}
= 4000 .
T WL~ channel ¢ Data .t
|_|>_' Signal (5 pb) B Drell-Yan
3500 ——m, =400 GeV [l Single t
Uncertainty 'A%
3000 . ttv
SM Higgs
2500
* Search for rare processes by

2000

predicting what process occurs

in a particle collision -
* E.g. Di-Higgs production - 500
1708.04188
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DNN output at m = 400 GeV


https://arxiv.org/abs/1708.04188

Mass regression

—— Reconstructed Signal, 37, ., . = 144.73 £0.06, 0 =57.44 +0.08
—— Regressed Signal, 31, ., =124.72+0.02,0=23.17£0.08
* Predictthe mass of adecayed
particle from knowledge of its =
B o
decay products ok
M - 0010
* E.qg.Higgstotau tau -
AMVA4NP:WP21-Da

M, [GeV]



http://www.pd.infn.it/~dorigo/wp1-d1.pdf

Reduce systematic uncertainties

®  Use adversarial training to build classifiers which are immune to unknown model parameters
® Helpsimprove inference of other model parameters, e.g. cross-section of a particular process

® E.g.Learning to Pivot with Adversarial Networks and Adversarial learning to eliminate
systematic errors: a case study in High Energy Physics

3 pf(X)|Z2= —0)
3 pAX)IZ2=0)
30H 3 (X)) 2= +0)

3 p(f(X)1Z2= —0)
33 p(f(X)|Z2=0)
30H O p(f(X)1Z= +0)

A ——

.6 08 1.0

X i 0.4 0.
fxy fx)

Figure 2: Toy example. (Left) Conditional probability densities of the decision scores at Z = —o, 0, o without
adversarial training. The resulting densities are dependent on the continuous parameter Z, indicating that f is
not pivotal. (Middle left) The associated decision surface, highlighting the fact that samples are easier to classify
for values of Z above o, hence explaining the dependency. (Middle right) Conditional probability densities of
the decision scores at Z = —o, 0, 0 when f is built with adversarial training. The resulting densities are now
almost identical to each other, indicating only a small dependency on Z. (Right) The associated decision surface,
illustrating how adversarial training bends the decision function vertically to erase the dependency on Z.



https://arxiv.org/pdf/1611.01046.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_1.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_1.pdf

Jet physics

Use convolutional and recurrent networks
to classify jets according to origin process:
Deeplet

Recluster event using QCD-aware
recursive networks to provide jet
embeddings: OCD-Aware Recursive
Neural Networks for Jet Physics

Event embedding

v(t1) v(t2)

v(tar)

Classifier

Bl (t1) hi™ (t2)

N N
A TA

{ ( ]\\ i 1

|
i
i
I N i ) )
O OO < O <

hi™ (tar)

O [ 1o

FIG. 2. QCD-motivated event embedding for classification. The embedding of an event is computed by feeding the sequence
of pairs (v(t;), hi*(t;)) over the jets it is made of, where v(t;) is the unprocessed 4-momentum of the jet t; and hi™ (t;) is its
embedding. The resulting event-level embedding h§;°™(e) is chained to a subsequent classifier, as illustrated in the right part

of the figure.


https://dl4physicalsciences.github.io/files/nips_dlps_2017_10.pdf
https://arxiv.org/pdf/1702.00748.pdf
https://arxiv.org/pdf/1702.00748.pdf

Many possible applications

. Particle ID
Jet tagging Event classification

Event triggering Kinematic regression

Simulation

Detector design Inference



Further reading

® Playinbrowser: Tensorflow playaround, gradient boosting playground

® Seminars and lectures: MLHEP-17, Karpathy, Hastie, HEP repository

® My resources: NN summary posts, example classifier



http://playground.tensorflow.org/
https://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
https://github.com/yandexdataschool/mlhep2017
https://www.youtube.com/watch?v=NfnWJUyUJYU
https://www.dropbox.com/s/2zmlxp6dmina6f7/SLDS2.pdf?dl=0
https://github.com/iml-wg/HEP-ML-Resources
https://amva4newphysics.wordpress.com/2017/03/21/understanding-neural-networks-part-i/
https://github.com/GilesStrong/ML_Tutorials/blob/master/classifiers/0_NN_Ensemble_Classifier.ipynb

The forward detector of

C. da Cruz e Silva

LIP, Lisbon, Portugal

07/02/2018



» Focuses on a special-class of interactions at the LHC

» Use the LHC as a photon/gluon collider

» The forward protons are scattered at small angles

» Use LHC magnets as a proton spectrometer:

» Need detectors very close to the beamline:

2 new horizontal 2 horizontal box-shaped RPs
cylindrical RPs (1 in LS1)

C. B. da Cruz e Silva CT-PPS



CT-PPS Status

» CT-PPS has been in operation since 2016

» Results with 2016 data have been published, proving that
such a detector can successfully operate in high luminosity
conditions

» LIP has had a strong involvement in CT-PPS:

Project Manager
J. Varela (LIP)
Deputy: N. Turini (Pisa/Siena)

Technical Coordinator
J. Baechler (CERN)
Deputy: J. Hollar (Louvain)

Institution Board

Chairman: M. Arneodo
(Novara/Torino)

J

Run Coordination
M. Deile (CERN)

DAQ & Readout Tracking Detectors
J. Hollar (LIP) A. Solano (Torino)
M. Quinto (CERN) E. Robutti (Genova)

Timing Detectors Clock & Trigger DPG & Offline
M. Gallinaro (LIP) D. Wright (LLNL) L. Mundim (UERJ)

N. Cartiglia (Torino) M. Khakzad (IPM) N.Turini (Pisa/Siena) V. Avati (CERN)

C. B. da Cruz e Silva CT-PPS



Research Opportunities

» CT-PPS is a new detector:

» Still under active development: This year (2018) an old sub-detector is being
replaced for a different type of detector

> Trigger systems under active development
» Physics analysis:

» Initial state has well defined quantum numbers — strong constraints on the
properties of the final state

» Study quartic gauge interactions (yy—=WW), searching for deviations from the
SM

» CT-PPS operates very close to the beam:
» Devices have to sustain high doses of radiation — Using new detector systems

» Some detectors currently used in CT-PPS are being considered for the
upgrades for HL-LHC in CMS — CT-PPS provides the opportunity to acquire
experience in these new systems

C. B. da Cruz e Silva CT-PPS
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Particles... Interactions... wait a minute...

ELEMENTARY BOSONS sin=o.1.5,..
PARTICLES WUnified Elecfroweok_ spin = 1 _7Sfr70nwgi(c_cr>|iri)7spin =1

Mass Electric Mass Electric

\
ame GeV/c? charge Name GeV/c2 | charge

g 0 0

gluon

W- | Higgs Boson _ spin=0 |

Mass Electric

w+ Name GeV/c? | charge

W bosons
z H

Z boson

0

Why would matter exist only in

: fermionic, and force carriers exist
FERMIONS ::)a.lrtutir1c/ozns;/|;u?;;s only in bosonic form in the

Leptons spin = 1/2 Quarks spin = 172 universe ?

Mass  Electric

AL GeV/c? charge

Flavor

Is this a “happens to be” ? Or there is
a hidden symmetry behind this ?

p_ electron
neutrino

<1x10-8 0 u up

d down 0.006 -1/3

€ electron |0.000511

muon

. neutrino <0.0002 9

C charm

Let's symmetrize things between

JL muon 0.106 S strange 0.1 -1/3

matter & interaction fields...

p_tau <0.02 0

At t top 175 2/3

T tau 1.7771

b bottom 4.3 -1/3
29



sParticles are special:

If SUSY exists, it's a
broken symmetry:

- Physical sParticles are
mixtures of Susy particles

- They exist @ higher masses

Each super particle will have more mass than

T T
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—
o

IIIIIII

Cross section (pb)
e
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th«ewlbeahemdef “super quark’, called

THE SEARCH FOR A HIDDEN WORLD OF SUPER PARTICLES

All the matter that makes up the visible Universe is made up of particles that, in turn, are made up of smaller elementary particles.
-but, what if Supersymmetry (also known as SUSY) is a theory that predicts that for every elementary particle
each of these we can see, there is a hidden super particle versi jon that we haven't seen yet
particles has a
super-secret

: 222799

QUARK m m amzmtwm

properties to their normal versions, but
their mass and “spin’ will be different.
its ‘normal’ version. So, for every quark,
a squark, hidden from view

A super particle will have a half unit less
‘spin’ than its normal counterpart,

|'||||(i

1 IIIl]III | IIIIIII|

IIIIIIII

m [GeV]H

Ll Ll

100

150 200 250 300 350 400 450 500
Particle mass (GeV)

Among all sParticles:
Which one is our best bet ?
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Introduction: Motivations for production & decay

Up squarks

g Hu) il ot
| f[p(&ﬁ /M)H) UfH[T)ﬁU}
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o)

Mass

N ~
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!

(@]
N

l

@)
_

o

SUSY

my=-u=M, m =M, tanf=10

t
Mass difference of quark superpartners c
proportional to M 0= M, :
SM
Strong mixing in the stops t. | sector ?
t might be the lightest squark ]
100 F
80 —
Am = M(t,) - M(x',) < 50 GeV/c? ; % o
Compatible with Q___h? = 0.11  0.01 @ 95% CL * «

(WMAP)
Kinematically closes 3- & most of 2-body decays

Pedrame Bargassa - LIP

7 5 /._.’_‘thf.gr,pzs
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100

Ll 1-‘.["'|| R |
1000
m, [GeV]
Boehm et al., PRD 62,

35012 31



SUSY V. 4

/not )

. ory W,l/ilch stgblhzes masses

But: Are we mass-in§
There has to.befl

! “\‘5

SU/;( cures the divergences of the
SM by definition: Associates a
scalar partner (-) to each SM
fermion (+)
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Observed vs. Predicted Keplerian

Prediction

Rotation Speed (km/sec)

10 20 30 40
Radius from the Center (kpc)

Keplerian _
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