

Search for the Higgs Boson decay to b quarks

Ana Patrícia Afonso & Joshua Winter | The ATLAS Group

Why are we still searching?

- The existence of the Higgs boson is an essential part of the Standard Model.
- It was found in 2012, decaying into a pair of vector bosons (WW or ZZ) or into two photons.
- H→bb is the most probable decay channel (57%) according to the SM, but it has not been observed yet.
- This channel is key to studying the properties of the Higgs in greater detail and to test its correlation to the predictions of the Standard Model.

ZH signal

Main Backgrounds

ttbar → WW+bb

ZH signal

Objectives

- Develop our search for the Higgs boson by using simulations of signal and background events to:
 - Study the Higgs mass resolution for events reconstructed in the resolved and boosted regimes;
 - Compare these methods and attempt to improve the **significance** of our analysis by considering the **efficiency** in selection and the **resolution** of boosted reconstructed ZH events in the **high pT** range.

Event selection

- Events with Z decaying to two same flavour, opposite charge leptons (electrons or muons)
- H decaying to two b-tagged jets or one fat jet with two b-tagged subjets
- Invariant mass of lepton pair corresponds to Z decay

Event selection Z→II cuts

- Cut 1: Transverse momentum of leading lepton: pTL1 > 27 GeV
- Cut 2: Invariant mass of lepton pair:
 81 < mLL < 101 (GeV)
- Cut 3: Same flavour leptons; opposite charge

Cut 4: Number of Jets:
 nJets >= 2

- Cut 4: Number of Jets:
 nJets >= 2
- Cut 5: Number of btagged Jets: nbJets = 2

- Cut 4: Number of Jets:
 nJets >= 2
- Cut 5: Number of btagged Jets: nbJets = 2
- Cut 6: **dRBB** for **pTV** regions
 - pTV ≤ 75 GeV:
 - 1.7 < dRBB < 3.2;
 - $75 \le pTV \le 150$ (GeV):
 - 1.1 < dRBB < 3.0;
 - $150 \le pTV \le 200$ (GeV):
 - 0.9 < dRBB < 1.8;
 - 200 ≤ pTV (GeV):
 - dRBB < 1.2.

- Cut 4: Number of Jets:
 nJets >= 2
- Cut 5: Number of btagged Jets: nbJets = 2
- Cut 6: dRBB for pTV regions
- Cut 7: "Significance" of Missing Transverse Energy relative to total transverse momentum: METHT < 3.5 √GeV

Event selection (Boosted)

Number of Fat Jets 10⁶ #entries Z->mumu+B pt1 Z->mumu+B pt2 • Cut 8: Number of Fat Z->mumu+B pt3 10⁵ Z->mumu+B pt4 jets: **nFatJets = 1** ttbar ZH signal 10⁴ Ē 10³ 10² Ē 10 10-1 2 з 0 4 5 6

Event selection (Boosted)

- Cut 8: Number of Fat jets: nFatJets = 1
- Cut 9: Number of btagged subjets:
 nbTagsInFJ = 2

Significance

Significance = signal /√(backgrounds)

	ZH signal	ttbar	Z → µµ (+jets)	Z→ee (+jets)	ZZ → LL+bb	Signi.
Initial	520.29	266895	1676338.5	992280	34685.9	0.30
Resolved	127.31	1560.84	27211.79	17666	1196.87	0.58
Boosted	5.10	3.96	59.51	46.19	25.48	0.44

In the mass range [105, 145] (GeV)

	ZH signal	ttbar	Z → µµ (+jets)	Z → ee (+jets)	ZZ→LL+bb	Signi.
Initial	244.53	53964.9	258217.54	179965	4651.47	0.35
Resolved	89.87	395.22	7353.51	4610.71	159.17	0.80
Boosted	3.73	0.66	9.45	6.78	2.58	0.85

NOTE: Only main backgrounds considered, this is useful as a comparison 16 / 30 between the boosted and resolved methods

Efficiency

- #of HZ events selected / total # of HZ events
- For a fair comparison of the efficiencies in Resolved and Boosted selections, cuts were restructured.

Z→II cuts	Resolved cuts	Boosted cuts
<i>Cut 1:</i> pTL1 > 27 GeV	Cut 5: nJets>=2	<i>Cut 8:</i> nFatJets = 1
<i>Cut 2:</i> 81 < mLL < 101 (GeV)	Cut 6: nbJets=2	<i>Cut 9:</i> nbTagsInFJ = 2
Cut 3: same flav, diff. charge	<i>Cut 7:</i> dRBB vs pTV	
<i>Cut 4:</i> MET<35 GeV		

Scale and Resolution

- The pTV was divided into intervals and gaussian fits were made in order to calculate the resolution and the mean.
- Fitted variables:
 - Resolved: Invariant
 Mass b-jet pair (mbb)
 - Boosted: fatJets_m, fatJets_caloMass, fatJets_TAmass.

Multivariate Analysis

 A Boosted **Decision Tree** (BDT) is a tool that uses a set of input variables (and the correlation between them) to make selections on a sample of signal + background, with the goal of separating signal events from the background.

Multivariate Analysis V2[▲] B **V1** S **V1**

25 / 30

Multivariate Analysis

- Resolved, boosted and combined samples were given to the BDT with the cuts previously mentioned (except the **dRBB** and **MET** cuts). The following variables were used to train the BDT.
- The input variables for each regime follow:
 - **Resolved** (*pTV*<300 *e pTV €* [300,500] GeV)
 - pTV, mLL, MET, dRBB, mBB, dPhiVBB, dEtaVBB, pTB1, pTB2;
 - **Boosted** (*pTV*>300 GeV)
 - pTV, mLL, MET, fatJets_C2, fatJets_D2, fatJets_Tau21, fatJets_m;
 - **Combined** (*pTV* ∈ [300,500] GeV)
 - All variables.

BDT Results

boosted (No MET) BDT Output

BDT test (points) and train (filled histogram) sample outputs for signal (blue) and background (red).

27 / 30

BDT Results

BDT results

- Plot of the significance background efficiency vs the signal efficiency for combined (red) and resolved500 (blue).
- It appears that the combined method provides a better significance for the signal events, however uncertainties are large.

Conclusion

We looked to compare resolved and boosted analysis methods so as to refine our search for the Higgs boson and its properties. From our results we conclude that:

- For higher transverse momentum, the **boosted** analysis is **more efficient** in event reconstruction;
- Better energy calibration for fat jet reconstruction may improve the mass scale and resolution for the boosted analysis;
- **Combined** analysis may **improve the significance** within the pTV range [300,500] (GeV);
- Need more high energy data to provide greater clarity on the significance and resolution of the boosted analysis.