

b hadrons as novel probes of the quark-gluon plasma

Júlia Silva Supervisor: Nuno Leonardo

IST • LIP

14/09/2017

LIP Summer Student Program 2017, Final Workshop, Lisbon

Quark-Gluon Plasma

State of matter formed by deconfined quarks and gluons

- Predicted to exist by QCD under extreme conditions of temperature and/or density
- Heavy ion collisions allow to recreate and study the QGP medium properties

Probing the Quark-Gluon Plasma

- Heavy-flavour states are ideal "hard probes" for studying the QGP
- Hard-scattered partons are expected to loose energy through:
 - Elastic Collisions
 - Medium induced gluon radiation
- Yield supression of high p_T hadrons, when compared to the vacuum
- The study of different hadron species allows to study the flavour dependence of energy loss in the medium

Nuclear Modification Factor

• Measures the effect of the medium on the hadron yields

$$R_{AA}(p_T) = rac{1}{< N_{coll} >} rac{dN_{AA}/dp_T}{dN_{pp}/dp_T}$$

- *N_{coll}* Number of binary nucleon-nucleon collisions
- $R_{AA} < 1$ Supression
- *R_{AA}* >1 Enhancement

B Meson Decay Channel

Selection

- Muon Acceptance:
 - $\begin{array}{ll} p_{\mu}^{\mu} > 3.5 \, \mathrm{GeV/c} & \text{for } |\eta^{\mu}| < 1.2 \\ p_{\mu}^{h} > (5.77 1.8 \times |\eta^{\mu}|) \, \mathrm{GeV/c} & \text{for } 1.2 \le |\eta^{\mu}| < 2.1 \\ p_{\mu}^{\mu} > 1.8 \, \mathrm{GeV/c} & \text{for } 2.1 \le |\eta^{\mu}| < 2.4 \end{array}$

Muon ID:

- Primary Vertex and muon track distance, Dxy (Dz)<0.3 (20) cm
 Tracker (Pixel) layer with > 5 (0) measurement
- Track Selection:
 - *p*_T >0.7 GeV
 - *y* <2.4

Selection

- J/Ψ candidate selection:
 - \blacksquare Fitted muon pair mass within PDG mass \pm 0.15 GeV
- B candidates selection:
 - |*y*| <2.4
 - χ^2 confidence level of the B vertex, chi2cl> 1.32×10^{-2}
 - ratio of the distance between PV and SV in the transverse plane normalized by its uncertainty, d0/d0Err>2
 - angle between B displacement and B momentum in the transverse plane, $\cos(\theta) > 0.26$

Mass Fitting

PDF's used:

- Signal: One Gaussian
- Background: Exponential Function

Mass Fitting

*p*_T: [5,10]

Mass Fitting

*p*_T: [15,20]

Efficiencies

- The efficiencies are determined from signal MC simulation
- It's a measurement of how much signal is lost by the selection (including trigger, reconstruction, offline cuts)

LIP Summer Internship

Cross Sections

$$\frac{d\sigma}{dp_T} = \frac{N^B}{2 \epsilon \mathcal{L} \mathcal{B} \Delta p_T}$$

•
$$B = 3.15 \times 10^{-5}$$
 (3.1 % uncertainty)

B_s production in the vacuum at 5.02 TeV

5 TeV (this work)

13 TeV (summer 2016 project)

Histogram of mass_dist_ Bmass mass dist Bmass Entries 75 Events / (0.01 Mean 5.41 8 RMS 0.2413 6 5 4 3 2 05 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 Bmass

Preliminary selection, not yet optimised.

LIP Summer Internship

Probing the Medium (PbPb collisons at 5 TeV)

Mass Fitting

- Not enough events in the data to let all parameters free
- Fix signal shape from MC simulation

Probing the Medium (PbPb collisons at 5 TeV)

B⁺ Decay Channel

First ever fully reconstructed B mesons in ion collisions

Probing the Medium (PbPb collisons at 5 TeV)

R_{AA} Determination

$$\frac{1}{T_{AA}} \frac{dN_{PbPb}}{dp_T}^B = \frac{N_{PbPb}}{2 N_{MB} T_{AA} \epsilon \mathcal{B} \Delta p_T}$$

$$R_{AA}(p_T) = \frac{1}{T_{AA}} \frac{dN_{PbPb}/dp_T}{d\sigma_{pp}/dp_T}$$

T_{AA} (nuclear overlap function) = 5.61 mb⁻¹ (+2.8%, -3.4% uncertainty)

- NMB (number of minimum bias events) = 2.4×10⁹ (1% uncertainty)
- $B = 3.15 \times 10^{-5}$ (3.1 % uncertainty)
- $\epsilon = 0.02 \ (0.09 \ \%)$ uncertainty) \rightarrow calculated just for the p_T bin [15,40]

Summary and Prospects

- CMS has reconstructed B hadrons for the first time ever in heavy ion collisions
 - challenging, but benefits from excelent muon and vertexing capabilities of the detector
- have made first attempt to reconstruct a rarer and particularly interesting meson state: B_s
 - measurement dominated by statistical uncertainty
 - attempting selection optimization with ANN
 - more ion data will allow a more robust determination of the suppression factor
- heavy flavor being actively explored as a new probe to characterize the formed QGP medium

BACK-UP

Systematic Uncertainties

PDF Variation

Systematic Uncertainties

Mass Range Variation

