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+ Why? State of matter
where quarks and
gluons are not bound
Into hadrons; also, it is
believed that existed at
the initial stages of our
Universe;
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t = Time (seconds, years)
E = Energy of photons (units GeV = 1.6 x 10719 joules)
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be indirectly... we cannot
observe the QGP directly
because it lives for a very short
time!!

We use jets! Several tools at our
disposition: theoretical
(perturbative QCD) and
phenomenological (Monte Carlo
Event Generators).
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final detected
particle distributions

T~ 1015 fdcS R
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| F.e { p oton"collision, we have two particles that scatter;

/¢ 'IXS scattering happens at a very large energy scale and produces
two new par Icles back-to-back;

+ Each of those will split into two, and these processes add to form
what we define as a jet.
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r ?w { p oton"collision, we have two particles that scatter;
+ This scattering happens at a very large energy scale and produces
two new par Icles back-to-back;

+ Each of those will split into two, and these processes add to form
what we define as a jet.
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two new particles back-to-back;

+ Each of those will split into two, and these processes add to form
what we define as a jet.
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ur Working Setup

+ Y tud ,*e tly is a jet, we
sed Pythia8 Monte Carlo event
enerator tuned for:

= ' _ \p\c;cesses (dijets)
+ Vs_ =5.02 TeV (current PbPb

/ collisions)
- |r]jet| < 2.5, Pt € [50, oof

+ And Fastjet package to reconstruct
jets with the following settings:

+ Anti-k_ algorithm

+ R=02...10
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IS a jet, we

8 Monte Carlo event

)C \Kc;cesses (dijets)
/ + Vs_ =5.02 TeV (current PbPb

¢ Ir]jetl < 2.5, pT,Hat < [50’ OO[

+ And Fastjet package to reconstruct
jets with the following settings:

+ Anti-k_ algorithm

+ R=02...10
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The idea Is to go back in the
pythia event record to track all the
jet history (mainly the number of

splittings and its fraction of

energy)
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Direct sum of QCD splitting functions
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QCD Splitting functions
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+ gluon jets (R = 0.4)

+ quark jets (R=0.4)
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# Splits

L eading Jet

Number of Splits vs Jet pT
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does a jet contain, on average?

Subleading Jet

Number of Splits vs Jet pT
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Number of Splits vs Jet pT

liS\behavior varies with the jet radius?
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)es the number of splittings ° :
\-- distance to the jet & aof-
+ Wefixed aéxyzn pt bin (400 GeV) I *
and checked the number of total o |
/ splittings as a function of the jet £
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The t eoré’ti_g" hint urged us
to fit the following function to
the previous data.

f(z) = a + blog(z)
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Number of Splits vs Radius (pT = 400 GeV)
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Number of Splits vs Energy Fraction on First Split
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one of thg 'zs bjets IS
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Totalnt q{o o) spllttlngs energy fraction of the first splitting, correlation
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4+ Quark vs gj&lmtlated jets

4 Leading vs subleading

teristics were investigated to relate to jet evolution
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' teristics were investigated to relate to jet evolution

a n u o splittings, energy fraction of the first splitting, correlation

be tw n t Wo;

4+ Quark vs gj&lmtlated jets

4 Leading vs subleading
4+ What have we learned?

4+ We didn’t know 95% of this topic!
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u o splittings, energy fraction of the first splitting, correlation

the two

4+ Quark vs gj&initiated jets

4 Leading vs subleading

/

4 What have we learned?
4+ We didn’t know 95% of this topic!

+ Now we don’t know only 90% :-)
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+ Create a space-time picture of a jet to better assess QGP density
evolution profile.
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Number of Splittings

Sidoes a jet contain, on
S it.change with the
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# Splits

Number of Splits vs Jet pT
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# Splits

Subleading Jet

Number of Splits vs Jet pT
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# Splits (Norm. to 1st bin)
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is_this quantity’s evolution with respect to the jet pT?

: éré'd'i'ng behave very differently.
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Subleading Jet
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Number of Splits vs Jet pT

+ gluon jets (R =0.4)
+ quark jets (R =0.4)
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1S! metric first
splitting means that
one of the subjets Is

“killed”

+ Same trend is found
for both leading and
subheading
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+ Hgvka jet Qevps on average, in vacuum, taking into account very
nel’sal features such:

\

+ How many'times does it splits; How this quantity can be related to the
jet energy and to the jet fragmentation pattern (leading or subleading)

+ How the first splitting controls the jet development;

+ How we can recover the number of splitting when increasing the jet
radius (direct link also to the jet energy - next question would be how is
the energy recovered with the jet radius)

+ How quark and gluon initiated jets can be different
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