

b-tagging in ATLAS Heavy Ion Collisions

Pedro Gabriel Manuel Xarepe

Introduction

- Particle jets are produced in high energy physics collisions;
 - Identifying each kind of particle (in particular b quarks) originated the jet is important in several kinds of physics studies;
- Goals:
 - Study the efficiency of the b-tagging algorithm IP3D on ATLAS heavy ion collisions;
 - Study under which conditions (jet pT, centrality, track pT threshold) the efficiency of the algorithm can be increased.

Heavy Ion Collisions

- Collision of lead ions (Pb-Pb);
- Higher number of nucleon collisions with respect to proton events;
- High energy density;
- Formation of a quark-gluon plasma (QGP).

Centrality

- Measured by the energy deposited in Forward Calorimeter;
 - More energy = more central;
- Peripheral collisions:
 - Smaller number of nucleon collisions (similar to p-p);
 - Higher number of occurrences;
- Central collisions:
 - High number of nucleon collisions;
 - Less frequent;

B Meson

- Relatively long lifetime ($\tau \approx 1.5 \text{ ps}$);
- Able to cross a longer distance before decay (cτ≈0.5 mm);
- Great tool to study the QGP.

b-tagging

- Method for identifying jets originating on a b quark;
- Several types of algorithms (Lifetime-based, muon-based, etc.);
- Lifetime-based:
 - Impact Parameter-based (JetProb, IP3D);
 - Vertex-based (SV, JetFitter);

Impact Parameters

- Transverse impact parameter (d₀): distance of closest approach of the track to the primary vertex (PV);
- Longitudinal impact parameter (z₀): diference between the z coordinates of the PV and the point of closest approach of the track.

MC Samples

- Samples:
 - p-p simulations (5 TeV);
 - Simulations embedded in real Pb-Pb collision data (minimum bias);
 - 5 samples in each case (JZ1-5);
 - Events weighted to match expected distribution;
- Track minimum pT thresholds:
 - 5 values: 1, 2, 3, 4, 5 GeV;
- Jet types:
 - b-jets;
 - c-jets;
 - Light jets;

- Matched jets: reconstructed jets with a matching simulated jet;
- Fake jets: reconstructed jets without a matching simulated jet (underlying event).

Transverse Momentum (pT)

Simulated

- Jet pT intervals:
 - JZ1 → 20-60 GeV;
 - JZ2 \rightarrow 60-160 GeV;
 - JZ3 \rightarrow 160-400 GeV;
 - JZ4 → 400-800 GeV;
 - JZ5 → 800-1300 GeV.
- Reconstruction of jets with pT under 60 GeV is unreliable;
- Jet selection:
 - Jet pT > 60 GeV;
 - Jet |η| < 2.5;

Reconstructed

Transverse Momentum (pT)

Impact Parameters

- Signature impact parameters distribution for b-jets;
- The asymmetry in the distribution is less visible in Pb-Pb collisions;
- The distribution is affected by the centrality of the collision

Impact Parameters vs Centrality

- Log Likelihood Ratio (LLR):
 - Comparison between the probabilities of a jet being a b-jet or light;
- b-tagging efficiency:

• Light jets rejection:

• 1 bin = 1 point in the Receiver Operating Characteristics (ROC) curve.

Jet pT interval (p-p)

- Light jet rejection:
 - Higher for JZ2 interval;
 - No significant difference between tracking pT thresholds.

Jet pT interval (Pb-Pb)

- Light jet rejection:
 - Higher for JZ2 interval;
 - Significant improvement from 1 GeV to 3 GeV threshold.

Centrality

- Better light jet rejection for peripheral collisions (similar to p-p);
- Poorer light jet rejection for central collisions.

Track pT threshold

- Peripheral collisions:
 - No significant change with respect to track pT threshold;
- Central collisions:
 - Significant increase in light jet rejection between 1 GeV and 3 GeV track pT threshold.

Conclusion

- Higher efficiency for lower leading jet pT;
- Lower efficiency for central collisions;
- Better rejection when the track pT threshold is higher:
 - Greater improvement between 1 and 3 GeV;
 - More significant for central colisions.