Ini				

Particle Detectors for the Most Energetic Particles

Rafaela Saraiva ¹ Igor Palha ²

¹Fisica Faculdade de Ciencias - Universidade de Lisboa

²Engenharia Fisica Tecnologica Instituto Superior Tecnico - Universidade de Lisboa

Rafaela Saraiva , Igor Palha

Particle Detectors for the Most Energetic Particles

ヘロマ ヘロマ ヘロマ イ

æ

Introduction		
Outline		

1 Introduction

2 Equipment

3 Results

4 Conclusions

・ロト・日本・日本・日本・日本・日本

Rafaela Saraiva , Igor Palha

MARTA - Pierre Auger Observatory

MARTA

Muon Array with RPCs for Tagging Air Showers

Figure 1: Cherenkov water tanks for cosmic rays detection

イロト イヨト イヨト イヨト

RPC - Resistive Plate Chamber

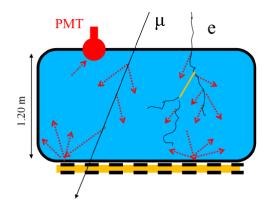


Figure 2: RPC schematic

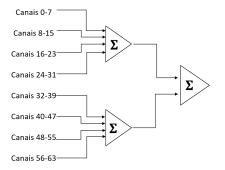
	《曰》《卽》《言》《言》	E nac
		LIP
st Energetic Particles		4/21

Rafaela Saraiva , Igor Palha

	Equipment	
Outline		

2 Equipment

4 Conclusions


・ロト・日・・ヨ・・ヨ・ シック

Rafaela Saraiva , Igor Palha

Circuit Board

Figure 3: Used Circuit Board

イロト イポト イヨト イヨト

Figure 4: Summation Circuit Schematic

Rafaela Saraiva , Igor Palha

Schematic

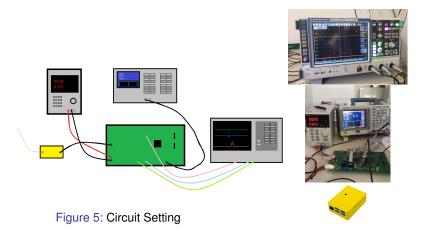


Figure 6: Oscilloscope, Power Supply, Signal Generator and Raspberry Pi

Rafaela Saraiva, Igor Palha

	Results	
Outline		

4 Conclusions

・ロト・日本・山下・山下・ 日・ うらぐ

Rafaela Saraiva , Igor Palha

Signal at the OpAmp



Figure 7: Signal at TP27 with 32 channels on with 64 gain with noise

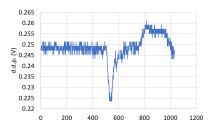


Figure 8: Signal at TP27 with 32 channels on with 128 gain without noise

Figure 9: TP27 - Output of the Third occ

Rafaela Saraiva , Igor Palha

Initial Testing

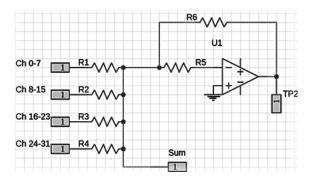


Figure 10: Summation Amplifier Circuit

크

→ E → < E</p>

Voltage Measurements - First OpAmp

Figure 11: Fit of a linear curve over the voltage of the Summation for a gain of 32

→ E → < E</p>

Conclusions

Voltage Measurements - Second OpAmp

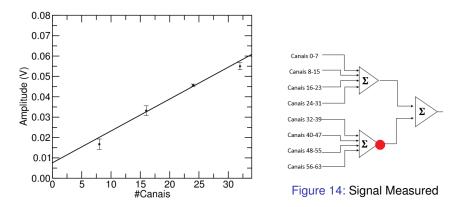


Figure 13: Fit of a linear curve over the voltage of the Summation for a gain of 32

Voltage Measurements - Third OpAmp

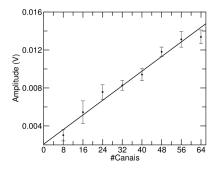


Figure 15: Fit of a linear curve over the voltage of the total Summation for a gain of 32

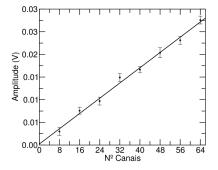


Figure 16: Fit of a linear curve over the voltage of the total Summation for a gain of 64

→ E → < E</p>

Voltage Measurements - Third OpAmp

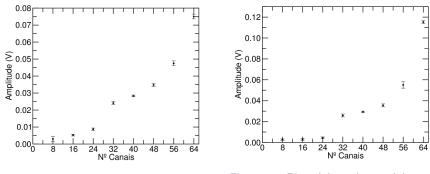
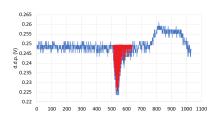


Figure 17: Plot of the voltage of the total Summation for a gain of 128


Figure 18: Plot of the voltage of the total Summation for a gain of 256

			- r -	-	*)4(*
a , Igor Palha					LIP
ors for the Most Energetic Particles					14/21

Rafaela Saraiva , Igor Palha

Particle Detector

Charge Measurements

q = C.V

Figure 19: Integral of the Slope Curve to Calculate the Charge

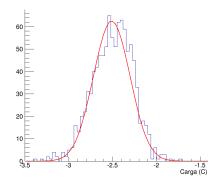
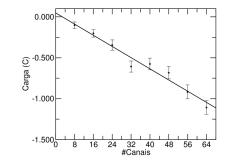
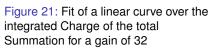




Figure 20: Normal Distribution of the Integrated Charge over 1000 measurements with 48 channels enabled

Charge Measurements

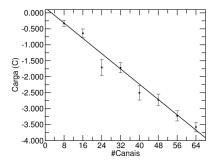


Figure 22: Fit of a linear curve over the integrated Charge of the total Summation for a gain of 64

→ E → < E</p>

0.000

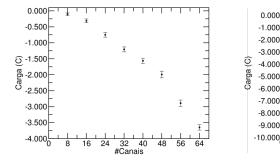
-1.000

-2.000

-3.000

-4.000

-5.000 -6.000


-7.000

-8.000

-9.000

8

Charge Measurements

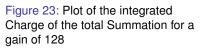


Figure 24: Plot of the integrated Charge of the total Summation for a gain of 256

24 32 40

#Canais

★ E → < E</p>

48 56 64

		Conclusions
Outline		

1 Introduction

2 Equipment

3 Results

4 Conclusions

Rafaela Saraiva , Igor Palha

Conclusions

The output of the OpAmps didn't behave as previously expected:

- It was expected a symmetry of results on the output signal of the OpAmp 1 and OpAmp 2.
- It was also expected a small gain on the summed signal (Summing Amplifier)

Measuring Problems

There was a significant amount of noise on the measured signal, possibly due to signal reflections, and pickup noise.

イロト イヨト イヨト イヨト

Impact on The Project

We helped improving the first part of the circuit board: the group decided to move the summation part to a side board.

Rafaela Saraiva , Igor Palha

Particle Detectors for the Most Energetic Particles

LIP 20/21

イロト イヨト イヨト イヨト

		Conclusions
The End		

Questions ?

Rafaela Saraiva , Igor Palha

Particle Detectors for the Most Energetic Particles