

Café com Física, 10 July 2013

Deconfinement and chiral restoration within the SU(3) PNJL and EPNJL models in an external magnetic field arXiv:1305.4751 [hep-ph]

Pedro Costa

Márcio Ferreira, Constança Providência

Centro de Física Computacional Departamento de Física, Universidade de Coimbra

Débora P. Menezes

Universidade Federal de Santa Catarina, Florianópolis, Brasil

Norberto Scoccola

Universidad Favaloro, Buenos Aires, Argentina

Coimbra, 10 July 2013

Motivation

QCD phase structure

The very first "QCD" phase diagram taken from Cabibbo-Parisi (1975)

Fig. 1. Schematic phase diagram of hadronic matter. ρ_B is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

- N. Cabibbo, G. Parisi, PLB 59 (1975) 67

Motivation

QCD phase structure

The very first "QCD" phase diagram taken from Cabibbo-Parisi (1975)

A schematic outline for the phase diagram of matter at ultrahigh density and temperature

Fig. 1. Schematic phase diagram of hadronic matter. ρ_B is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

- N. Cabibbo, G. Parisi, PLB 59 (1975) 67

– A. Ohnishi, PTPS 193 (2012) 1-10

Motivation

Deconfinement and chiral restoration in an external magnetic field:

Important for:

- physics of compact objects like magnetars;
- measurements in heavy ion collisions at very high energies;
 - RHIC energy scale: $eB_{max} \approx 5 \times 10^{18} \text{ G} (5 \times m_{\pi}^2)$
 - LHC energy scale: $eB_{max} \approx 5 \times 10^{19} \text{ G} (15 \times m_{\pi}^2)$
- first phases of the universe.

Concept of order parameter

Symmetries, order parameters, and phase transitions

Order parameter is a physical quantity that must

- vary under transformations of a symmetry
- be nonzero in a state with spontaneously broken symmetry

It must be able to distinguish between two distinct phases!

Concept of order parameter

Symmetries, order parameters, and phase transitions

Order parameter is a physical quantity that must

- vary under transformations of a symmetry
- be nonzero in a state with spontaneously broken symmetry

It must be able to distinguish between two distinct phases!

In QCD:

- it is helpful to use QCD symmetries to delineate the different phases
- It to study transitions between phases, or thermodynamic states of the system, in which the symmetry is realized in one of two different ways:
 - as an exact symmetry
 - as a spontaneously broken symmetry

QCD

Properties of QCD I

- Chiral symmetry χ_S
 - Connection of left- and right-handed quarks
 - Exact symmetry if quarks are massless
 - Explicit breaking by quark masses
- Chiral symmetry spontaneously broken
 - Nucleon mass of $\sim 1 \text{ GeV}$ although bare quark masses $\sim 5 \text{ MeV}$
 - \checkmark "Constituent" or bound state quark masses larger by $\sim 300~{\rm MeV}$

If the Lagrangian of a system has a certain symmetry, but the ground state (i.e., the vacuum) does not

Spontaneous symmetry breaking takes place

QCD

- Confinement
 - Free quarks and gluons not observed
 - In general: No colored objects observed
- Not yet totally understood

Chiral symmetry χ_S

When $m_u = m_d = m_s = 0$ (chiral limit) χ_S is **spontaneously broken**

- polarization of the vacuum turning it into a condensate of quark-antiquark pairs $(\langle \overline{\psi}_i \psi_i \rangle)$;
- origin of 8 massless pseudoscalar mesons (Goldstone bosons);

At high values of *T* and $\mu_B \mapsto$ restoration of χ_S

Chiral symmetry χ_S

When $m_u = m_d = m_s = 0$ (chiral limit) χ_S is **spontaneously broken**

- polarization of the vacuum turning it into a condensate of quark-antiquark pairs $(\langle \overline{\psi}_i \psi_i \rangle)$;
- origin of 8 massless pseudoscalar mesons (Goldstone bosons);

At high values of *T* and $\mu_B \mapsto$ restoration of χ_S

order parameters: quark condensates

$$\langle \overline{\psi}_i \psi_i \rangle \begin{cases} \neq 0 \iff \text{symmetry broken}, T < T_c^{\chi} \\ = 0 \iff \text{symmetry restored}, T > T_c^{\chi} \end{cases}$$

Chiral symmetry χ_S

When $m_u = m_d \neq 0$ and $m_s \neq 0$ (small values) χ_S is **explicitly broken**

- transformation of an initially pointlike quark with its small bare mass into a massive quark;
- mesonic spectrum for pseudoscalar mesons (pions, kaons, eta);

At high values of *T* and $\mu_B \mapsto$ restoration of χ_S

Chiral symmetry χ_S

When $m_u = m_d \neq 0$ and $m_s \neq 0$ (small values) χ_S is **explicitly broken**

- transformation of an initially pointlike quark with its small bare mass into a massive quark;
- mesonic spectrum for pseudoscalar mesons (pions, kaons, eta);

At high values of *T* and $\mu_B \mapsto$ restoration of χ_S

quark condensates:

$$\langle \overline{\psi}_i \psi_i \rangle \begin{cases} \neq 0 & \Leftrightarrow \text{ symmetry broken, } T < T_c^{\chi} \\ \rightarrow \langle \overline{\psi}_i \psi_i \rangle_0 & \Leftrightarrow \text{ symmetry restored, } T > T_c^{\chi} \end{cases}$$

Still used as order parameter for the chiral transition

De/confinement

Deconfinement:

- \mathcal{L}_{QCD} has an (exact) $SU_c(3)$ local color symmetry
- low temperature: \mathbb{Z}_3 symmetric, confined phase (\mathbb{Z}_3 center of $SU_c(3)$ symmetry)
- high temperature: deconfined phase characterized by the spontaneous breaking of the \mathbb{Z}_3 symmetry

De/confinement

Deconfinement:

- \mathcal{L}_{QCD} has an (exact) $SU_c(3)$ local color symmetry
- low temperature: \mathbb{Z}_3 symmetric, confined phase (\mathbb{Z}_3 center of $SU_c(3)$ symmetry)
- **•** high temperature: deconfined phase characterized by the spontaneous breaking of the \mathbb{Z}_3 symmetry

Order parameter in pure gauge theory $(m_f \to \infty)$:

Polyakov loop
$$\Phi = \frac{1}{N_c} \operatorname{Tr}_c \left\langle \left\langle \mathcal{P} \exp \left[i \int_0^\beta d\tau A_4(\vec{x}, \tau) \right] \right\rangle \right\rangle$$

- Not well defined with quarks
- Used anyway (still possible to distinguish both phases)

 $\Phi \begin{cases}
= 0 \iff T < T_c^{\Phi}, \text{ hadronic (confined) phase} \\
\neq 0 \iff T > T_c^{\Phi}, \text{ QGP (deconfined) phase}
\end{cases}$

Understand the QCD phase structure is one of the most important topics in the physics of strong interactions

Theoretical point of view:

- Effective model calculations
- Lattice calculations

- S. Borsanyi et al., JHEP 1011 (2010) 077

Understand the QCD phase structure is one of the most important topics in the physics of strong interactions

Theoretical point of view:

- Effective model calculations
- Lattice calculations

Experimental point of view:

Map the QCD phase boundary

- S. Borsanyi et al., JHEP 1011 (2010) 077 - A. Andronic et al., NPA 837 (2010) 65

P. Costa – Café com Física, 10 July 2013 – p. 10/45

QCD phase structure

Experimental point of view:

- "The Frontiers of Nuclear Science, A Long Range Plan",

arXiv:0809.3137 [nucl-ex]

P. Costa – Café com Física, 10 July 2013 – p. 11/45

Understand the QCD phase structure is one of the most important topics in the physics of strong interactions

Experimental point of view:

Beam Energy Scan (BES) program at $RHIC^1$:

- map the QCD phase boundary;
- search for the QCD Critical End Point
 - "energy scan" of Au+Au collisions at energies from $\sqrt{s_{NN}} = 7.7 200 \text{ GeV}$
 - higher moments of net-proton multiplicity distributions
 - particle ratio fluctuations $(K/\pi, p/\pi \text{ and } K/p)$

CEP: No clear evidence yet!

 1 X. Luo, STAR Collaboration, APPB 5 No 2 (2012) 497

Understand the QCD phase structure is one of the most important topics in the physics of strong interactions

Much more to come in the future

- FAIR (CBM)
- NICA (MPD)

NICA: Nuclotron based Ion Collider fAcility Collider with $\sqrt{s_{NN}} = 3.5 - 11$ GeV (Begin 2015)

Program:

- Systems with highest baryon density
- Critical point

- Quarkyonic phase
- Chiral symmetry restoration

If the CEP is found, it would be the first clear indication for the chiral phase transition in the heavy-ion experiments

Open questions:

Restoration of chiral symmetry (χ_S) and deconfinement:

- connection between chiral symmetry and confinement?
- can both transitions occur simultaneously?
- 1^{st} order chiral phase transition at high baryon density?
- where is the CEP?
- does an external magnetic field enhances the χ_S breaking? Magnetic catalysis. (The magnetic field has a strong tendency to enhance ("catalyze") spin-zero fermion-antifermion condensates);
- or, can the magnetic field suppress the quark condensate (inverse magnetic catalysis)?

Lattice calculations

Lattice calculations at Finite Temperature:

Restoration of chiral symmetry and deconfinement: both transitions can occur simultaneously?

Phase transition:

A. Bazavov, et al., PRD 85 (2012) 054503
Y. Aoki et al. JHEP 0906 (2009) 088

Lattice calculations

Lattice calculations at Finite Temperature:

Effect of an external magnetic field on the finite temperature transition of QCD

Phase transition deduced from peaks in susceptibilities

- G.S. Bali, et al., JHEP 1202 (2012) 044 - F. Bruckmann, et al., JHEP 1304 (2013) 112

P. Costa – Café com Física, 10 July 2013 – p. 17/45

The PNJL model

Polyakov loop extended Nambu–Jona-Lasinio model with strange quarks

Symmetries of QCD

QCD

- Chiral (χ_S) symmetry $\Leftrightarrow \begin{cases} -\text{hadron masses} \\ -\text{dynamics of hadrons at low energy} \end{cases}$
- Center (\mathbb{Z}_3) symmetry \Leftrightarrow de/confinement
 - **explicitly** broken (softly) by the presence of dynamical quarks

Symmetries of QCD

QCD

- Chiral (χ_S) symmetry $\Leftrightarrow \begin{cases} -\text{hadron masses} \\ -\text{dynamics of hadrons at low energy} \end{cases}$
- Center (\mathbb{Z}_3) symmetry \Leftrightarrow de/confinement
 - **explicitly** broken (softly) by the presence of dynamical quarks

QCD inspired models

NJL model: only chiral symmetry aspects

- $U_A(1)$ symmetry breaking is implemented by 't Hooft interaction
- PNJL model: **synthesis** between chiral and de/confinement aspects

PNJL model in the presence of an external magnetic field

$$\mathcal{L}_{PNJL} = \bar{q} \left(i\gamma_{\mu} D^{\mu} - \hat{m} \right) q + \frac{g_S}{2} \sum_{a=0}^{8} \left[\left(\bar{q} \lambda^a q \right)^2 + \left(\bar{q} (i\gamma_5) \lambda^a q \right)^2 \right]$$

PNJL model in the presence of an external magnetic field

$$\mathcal{L}_{PNJL} = \bar{q} (i\gamma_{\mu}D^{\mu} - \hat{m}) q + \frac{g_{S}}{2} \sum_{a=0}^{8} \left[(\bar{q}\lambda^{a}q)^{2} + (\bar{q}(i\gamma_{5})\lambda^{a}q)^{2} \right] + g_{D} \left[\det \left[\bar{q}(1+\gamma_{5})q \right] + \det \left[\bar{q}(1-\gamma_{5})q \right] \right] + \mathcal{U} (\Phi, \bar{\Phi}; T) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

PNJL model in the presence of an external magnetic field

$$\mathcal{L}_{PNJL} = \bar{q} (i\gamma_{\mu}D^{\mu} - \hat{m}) q + \frac{g_{S}}{2} \sum_{a=0}^{8} \left[(\bar{q}\lambda^{a}q)^{2} + (\bar{q}(i\gamma_{5})\lambda^{a}q)^{2} \right] + g_{D} \left[\det \left[\bar{q}(1+\gamma_{5})q \right] + \det \left[\bar{q}(1-\gamma_{5})q \right] \right] + \mathcal{U} (\Phi, \bar{\Phi}; T) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

where $\hat{m} = \text{diag}(m_u, m_d, m_s)$ is the current quark mass matrix

 $D^{\mu} = \partial^{\mu} - iq_f A^{\mu}_{EM} - ig A^{\mu}; \quad A^{\mu} = \delta^{\mu}_0 A^0$ (Polyakov gauge)

• $A_{\mu}^{EM} = \delta_{\mu 2} x_1 B$ static and constant magnetic field in the z direction

Coupling between Polyakov loop and quarks uniquely determined by covariant derivative D^{μ}

$$\Phi(\vec{x}) = \frac{1}{N_c} \operatorname{Tr}_c \left\langle \left\langle \mathcal{P} \exp\left[i \int_0^\beta d\tau A_4(\vec{x}, \tau)\right] \right\rangle \right\rangle$$

– C. Ratti, et al., PRD 73 (2006) 014019

Polyakov loop extended NJL model

- **9** The model includes features of both **chiral** and \mathbb{Z}_3 symmetry breaking
- The coupling is fundamental for reproducing lattice results concerning QCD thermodynamics: it originates a suppression of the unconfined quarks in the hadronic phase¹ (low temperature)

Polyakov loop extended NJL model

- **9** The model includes features of both **chiral** and \mathbb{Z}_3 symmetry breaking
- The coupling is fundamental for reproducing lattice results concerning QCD thermodynamics: it originates a suppression of the unconfined quarks in the hadronic phase¹ (low temperature)
- A non-zero **Polyakov loop** reflects the **spontaneously broken** \mathbb{Z}_3 symmetry characteristic of deconfinement (high temperature)
 - \mathbb{Z}_3 is broken in the deconfined phase $(\Phi \to 1)$
 - \mathbb{Z}_3 is restored in the confined one $(\Phi \to 0)$

1- C. Ratti et al., PRD 73 (2006) 014019

Polyakov loop extended NJL model

- **9** The model includes features of both **chiral** and \mathbb{Z}_3 symmetry breaking
- The coupling is fundamental for reproducing lattice results concerning QCD thermodynamics: it originates a suppression of the unconfined quarks in the hadronic phase¹ (low temperature)
- A non-zero **Polyakov loop** reflects the **spontaneously broken** \mathbb{Z}_3 symmetry characteristic of deconfinement (high temperature)
 - \mathbb{Z}_3 is broken in the deconfined phase $(\Phi \to 1)$
 - \mathbb{Z}_3 is restored in the confined one $(\Phi \to 0)$
- At T = 0: $\Phi = \overline{\Phi} = 0 \mapsto$ both sectors decouple

Effective potential $\mathcal{U}(\Phi, \overline{\Phi}; T)$

• Effective potential for the (complex) Φ field: is conveniently chosen to reproduce results obtained in lattice calculations

$$\frac{\mathcal{U}(\Phi,\bar{\Phi};T)}{T^4} = -\frac{a(T)}{2}\bar{\Phi}\Phi + b(T)\ln[1 - 6\bar{\Phi}\Phi + 4(\bar{\Phi}^3 + \Phi^3) - 3(\bar{\Phi}\Phi)^2]$$

with

$$a(T) = a_0 + a_1 \left(\frac{T_0}{T}\right) + a_2 \left(\frac{T_0}{T}\right)^2, \ b(T) = b_3 \left(\frac{T_0}{T}\right)^3$$

<i>a</i> ₀	<i>a</i> ₁	<i>a</i> ₂	<i>b</i> ₃
3.51	-2.47	15.2	-1.75

and $T_0 = 270$ MeV

- S. Roessner, C. Ratti, W. Weise, PRD 75 (2007) 034007

- low temperature: \mathbb{Z}_3 symmetric, confined phase (\mathbb{Z}_3 center of $SU_c(3)$ symmetry)
- **•** high temperature: deconfined phase characterized by the spontaneous breaking of the \mathbb{Z}_3 symmetry

– H. Hansen, et al., PRD 75, (2007) 065004

Entangled PNJL (EPNJL)

 $g_S = const. \longmapsto g_S(\Phi)$

The diagrammatic description of the effective vertex $g_S(\Phi)$:

$$= + + \cdots$$

$$g_S(\Phi,\bar{\Phi}) = g_S[1 - \alpha_1 \Phi \bar{\Phi} - \alpha_2 (\Phi^3 + \bar{\Phi}^3)]$$

- entanglement interactions between $\langle \bar{q}_i q_i \rangle$ and Φ in addition to the covariant derivative in the original PNJL model;
- the entanglement vertex $g_S(\Phi)$ makes the correlation between the chiral restoration and the deconfinement transition stronger;

The parameter set $(\alpha_1 = 0.25, \alpha_2 = 0.10)$ must satisfy the triangle region $\{-1.5\alpha_1 + 0.3 < \alpha_2 < -0.86\alpha_1 + 0.32\alpha_2, \alpha_2 > 0\}.$

-Y. Sakai, et al., PRD 82 (2010) 076003

Methodology:

Minimization of $\Omega(T, \mu_f)$ with respect to M_f (f = u, d, s)

"Gap" equations:

$$M_f = m_f - 2g_S \langle \bar{q}_f q_f \rangle + 2g_D \langle \bar{q}_j q_j \rangle \langle \bar{q}_k q_k \rangle$$

Effective action for the scalar and pseudoscalar mesons

Meson propagators, $g_{M\bar{q}q}, f_{M\bar{q}q}, \dots$

Criterion to identify *partial* and *effective* restoration of symmetries:

- Partial restoration of symmetries: $\frac{\partial^2 \langle \bar{u}u \rangle}{\partial T^2} = \frac{\partial^2 \langle \bar{s}s \rangle}{\partial T^2} = \frac{\partial^2 \Phi}{\partial T^2} = 0$
- Effective restoration of symmetries: the symmetry violating observables vanish (ex.: degenerescence of chiral partners)
- In the chiral limit both concepts coincide.

 $C_f = -m_{\pi} \partial \sigma_f / \partial T \text{ (where } \sigma_f = \langle \bar{q_f} q_f \rangle (B, T) / \langle \bar{q_f} q_f \rangle (B, 0) \text{)}; C_{\Phi} = m_{\pi} \partial \Phi / \partial T$

 $C_f = -m_{\pi} \partial \sigma_f / \partial T \text{ (where } \sigma_f = \langle \bar{q_f} q_f \rangle (B, T) / \langle \bar{q_f} q_f \rangle (B, 0) \text{)}; C_{\Phi} = m_{\pi} \partial \Phi / \partial T$

- Smooth **crossover** from the chirally broken to the chirally symmetric phase: *partial* restoration of χ_S
 - **9** T^{χ} for u and d quark transitions become different as e^{B} increases;
 - • $q_u = 2e/3; q_d = -e/3 \mapsto M_u$ becomes larger and the restoration of χ_S in the *u* sector is delayed:
 - T_u^{χ} is higher than T_d^{χ}

 $C_f = -m_{\pi} \partial \sigma_f / \partial T \text{ (where } \sigma_f = \langle \bar{q_f} q_f \rangle (B, T) / \langle \bar{q_f} q_f \rangle (B, 0) \text{)}; C_{\Phi} = m_{\pi} \partial \Phi / \partial T$

- Smooth **crossover** from the chirally broken to the chirally symmetric phase: *partial* restoration of χ_S
 - T^{χ} for u and d quark transitions become different as eB increases;
 - $q_u = 2e/3$; $q_d = -e/3 \mapsto M_u$ becomes larger and the restoration of χ_S in the *u* sector is delayed:
 - T_u^{χ} is higher than T_d^{χ}
 - C_{Φ} becomes narrower as eB increases \mapsto eventually for sufficient strong eB a 1^{st} order phase transition takes place

Pseudo-critical temperatures for the chiral transition $(T_c^{\chi} = (T_u^{\chi} + T_d^{\chi})/2)$ and for the deconfinement (T_c^{Φ}) with $\mathbf{T_0} = \mathbf{210}$ MeV.

		PN	EPNJL			
eВ	T_u^{χ}	T_d^{χ}	T_c^{χ}	T_c^{Φ}	T_c^{χ}	T_c^{Φ}
$[\mathrm{GeV}^2]$	[MeV]	[MeV]	[MeV]	[MeV]	[MeV]	[MeV]
0	199	199	199	170	186	184
0.2	208	207	208	171	191	186
0.4	226	224	225	174	203	192
0.6	245	241	243	177	221	204
0.75	261	253	257	181	233	210
0.8	266	256	261	182	238	214
1	287	270	279	186	254	224

as eB becomes stronger, the separation between T_c^{χ} and T_c^{Φ} increases;

eB has a smaller impact in the location of the deconfinement crossover: T_c^Φ has just a weaker increase

(E)PNJL vs. lattice calculations

- For T = 0 three models NJL, PNJL and EPNJL coincide;
- Results quantitatively agree with lattice^{**} and even at $eB = 1 \text{ GeV}^2$ there is a discrepancy of the order of ~ 15 %.

(E)PNJL vs. lattice calculations

Results obtained for PNJL (EPNJL) model together with the continuum extrapolated lattice results for the light condensates at $T = 0^{**}$

T = 0	eB = 0		$eB = 0.2 \ { m GeV}^2$		$eB = 0.4 \text{ GeV}^2$	
I = 0	+/2	—	+/2	—	+/2	_
(E)PNJL	1	0	1.11	0.08	1.32	0.23
Latt. **	1	0	1.14(2)	0.09(2)	1.37(2)	0.28(2)
$eB = 0.6 \text{ GeV}^2$		a D O	$0 \alpha x^2$	aD 1	$0 \alpha x^2$	
T = 0	$e_D = 0.$	6 Gev-	eB = 0.	8 Gev-	$e_D = 1.$	0 Gev-
T = 0	$\frac{eB \equiv 0}{+/2}$	6 Gev-	$eB \equiv 0.$ $+/2$	8 Gev-	$e_B \equiv 1.$ +/2	U GeV-
T = 0(E)PNJL	eB = 0. $+/2$ 1.55	6 GeV ⁻ - 0.40	eB = 0. $+/2$ 1.79	8 Gev-	$eB \equiv 1.$ $+/2$ 2.02	0 GeV ² — 0.76

"+/2": average of the light condensates $((\Sigma_u + \Sigma_d)/2);$

"-": difference of the light condensates $(\Sigma_u - \Sigma_d)$.

- The average of the light condensates is in good agreement with lattice results, specially at low magnetic fields;
 - $eB = 1 \text{ GeV}^2$: the average of the light condensates do not differ more than ~ 10%.
- ** G. S. Bali, et al., PRD 86 (2012) 071502

PNJL magnetic catalysis

Change of the renormalized condensates as a function of eB for several temperatures:

PNJL magnetic catalysis

Change of the renormalized condensates as a function of eB for several temperatures:

 $T > T_c^{\chi}(eB = 0):$

- **9** Two competitive effects: partial restoration of χ_S and magnetic catalysis.
 - Partial restoration of χ_S prevails at lower values of eB: the change of the renormalized condensates is approximately zero;
 - The magnetic catalysis becomes dominant as eB increases:
 - the change of the renormalized condensates condensate becomes nonzero.

PNJL vs. lattice calculations

- (E)PNJL have the same behavior as the lattice results^{**} except for a too fast drop above the respective transition temperatures.
- \blacksquare stronger magnetic catalysis for the u quark, due to its larger electric charge
 - higher $eB \mapsto$ larger difference between u and d condensates;
 - higher $eB \mapsto larger$ difference between T_c^u and T_c^d ;
 - After T_c^{χ} : partial restoration of χ_s prevails over the magnetic catalysis

smaller $\Sigma_u - \Sigma_d$

** G. S. Bali, et al., PRD 86 (2012) 071502

Lattice calculations

- G.S. Bali, et al., JHEP 1202 (2012) 044
- F. Bruckmann, et al., JHEP 1304 (2013) 112

EPNJL *Inverse* magnetic catalysis

 $T_0(eB)$ allows to describe the back reaction on the Polyakov loop due to eB

 $T_0(eB) = T_0(eB = 0) - 282.5(eB)^2 + 38.1(eB)^4$, $eB < 0.75 \text{ GeV}^2$

- $T_0(eB = 0) = 270 \text{ MeV}$
- Pseudo-critical temperatures in EPNJL model with $T_0(eB)$:
 - Reproduces the shifted $T_c^{\chi}(eB)$ for eB up to 0.75 GeV².

eB [GeV ²]	0	0.2	0.4	0.6	0.75
T_c^{χ} [MeV]	215	214	211	205	200
T_c^{Φ} [MeV]	214	211	200	198	200

EPNJL *Inverse* magnetic catalysis

 $T_0(eB)$ allows to describe the back reaction on the Polyakov loop due to eB

 $T_0(eB) = T_0(eB = 0) - 282.5(eB)^2 + 38.1(eB)^4, \quad eB < 0.75 \text{ GeV}^2$

- $T_0(eB = 0) = 270 \text{ MeV}$
- Pseudo-critical temperatures in EPNJL model with $T_0(eB)$:
 - Reproduces the shifted $T_c^{\chi}(eB)$ for eB up to 0.75 GeV².

eB [GeV ²]	0	0.2	0.4	0.6	0.75
T_c^{χ} [MeV]	215	214	211	205	200
T_c^{Φ} [MeV]	214	211	200	198	200

- For 200 < T < 215 MeV: strong interplay between partial restoration of χ_S and magnetic catalysis
 - smaller $eB \mapsto \text{magnetic catalysis}$ is dominant;
 - higher $eB \mapsto$ restoration of χ_S is dominant;

EPNJL *Inverse* magnetic catalysis

 $T_0(eB)$ allows to describe the back reaction on the Polyakov loop due to eB

 $T_0(eB) = T_0(eB = 0) - 282.5(eB)^2 + 38.1(eB)^4$, $eB < 0.75 \text{ GeV}^2$

- The Polyakov Loop follows the same tendency predicted by lattice calculations¹: T_c^{Φ} decreases as eB increases;
- For eB above 0.75 GeV² $T_0(eB)$ becomes too small and the deconfinement transition becomes of 1^{st} order.

¹ F. Bruckmann, et al., JHEP 1304 (2013) 112

P. Costa – Café com Física, 10 July 2013 – p. 35/45

Phase diagram

Where is the CEP?

Predictions for the location of the QCD critical point on the phase diagram

- M. Stephanov, PoS(LAT2006)024

P. Costa – Café com Física, 10 July 2013 – p. 36/45

PNJL phase diagram

The trend is very similar for different scenarios:

- as the intensity of the magnetic field increases, T^{CEP} increases and μ_B^{CEP} decreases until $eB \sim 0.3 \text{ GeV}^2$;
- for stronger magnetic fields both T^{CEP} and μ_B^{CEP} increase;
- Phase transition driven by the magnetic field will occur (for $\mu_d > 1.45\mu_u$):
 - **\square** possible appearance of multiple CEPs for for sufficiently small values of eB and T.

Summary

- In the presence of an external magnetic field at T = 0, the quantitative behavior of SU(3) PNJL and EPNJL is closer to the lattice results;
- Chiral and deconfinement transition temperatures increase in the presence of an external magnetic field, although the deconfinement transition temperature suffers a much weaker effect;
- In the EPNJL model the magnetic field destroys the coincidence of the deconfinement and chiral transition temperatures at eB = 0;
- In the EPNJL model, a magnetic field dependent parametrization of the Polyakov loop can invert the magnetic catalysis and the pseudo-critical temperatures decreases with the increase of the magnetic field strength, reproducing lattice calculations.

Appendix: H₂**O** phase diagram

Thermodynamical information can be presented in the form of a phase diagram: the different manifestations or phases of a substance occupy different regions

P water ice riple point: $(P_{cr} = 2.21 \times 10^7 \text{ Nm}^2, T_{cr} = 273.16 \text{ K})$ steam T

Familiar example: H₂O P.D.

(no to scale)

Appendix: H₂O phase diagram

- Thermodynamical information can be presented in the form of a phase diagram: the different manifestations or phases of a substance occupy different regions
 The lines mark the various coexistence
- Familiar example: H₂O P.D.

– The lines mark the various coexistence curves P(T)

$\mathbf{+}$

two phases are in equilibrium

- moving along a path in the (T, P) plane which intersects the curves

phase transition (e.g.: melting or boiling)

- Two special points in the P.D.
 - triple point (where all three phases coexist)
 - critical point (where the liquid–vapour separation disappears)

Appendix: H₂O phase diagram

Thermodynamical information can be presented in the form of a phase diagram: the different manifestations or phases of a substance occupy different regions
— transition between liquid and

vapour:

Familiar example: H₂O P.D. **J** $T < T_c$: first-order \downarrow discontinuities in the entropy ΔS Р crossover and in the volume ΔV critical point: water critical point: second order 1st order transition ice \downarrow triple point: singularities in the specific heat C_P steam beyond the critical point: **crossover region** Т thermodynamic observables still vary (no to scale) very rapidly

Appendix: QCD

Quantum Chromodynamics – QCD

- Theory of strong interactions
- **Describes the structure of hadrons and (ultimately) nuclei**
- Elementary degrees of freedom are quarks and gluons
 - Carry new charge: Color charge
 - Quarks come in red, green, blue, and anti-colors
- Interactions mediated by gluons
- **9** Gluons are also charged

Quark flavor	$Mass^1$	Bound state [MeV]	Spin	Charge $[Q/e]$
Up	$2.3^{+0.7}_{-0.5}~{\rm MeV}$	~ 300	$\frac{1}{2}$	2/3
Down	$4.8^{+0.7}_{-0.3}~{\rm MeV}$	~ 300	$\frac{1}{2}$	-1/3
S trange	$95\pm5~{\rm MeV}$	~ 450	$\frac{1}{2}$	-1/3
Charm	$1275\pm0.025~{\rm MeV}$	~ 1800	$\frac{1}{2}$	2/3
Bottom	$4.18\pm0.03~{\rm GeV}$	~ 4800	$\frac{1}{2}$	-1/3
Тор	$173\pm0.6~{\rm GeV}$	No known bound states	$\frac{1}{2}$	2/3
Gluon	0	Not applicable?	1	0

¹ Particle Data Group, PRD 86 (2012) 010001

Appendix: QCD

QCD Lagrangian

$$\mathcal{L}_{QCD} = \bar{\psi} \left(i \gamma^{\mu} D_{\mu} - \hat{m} \right) \psi - \frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu}_{a}$$

- ψ ; $\bar{\psi}$: quarks with six flavors (u, d, s, c, b, t) and three colors $(N_c = 3)$;
- \hat{m} : current quark mass matrix ($\hat{m} = \operatorname{diag}_{f}(m_{u}, m_{d}, \ldots, m_{t})$);

•
$$D_{\mu} = \partial_{\mu} - ig \frac{\lambda^{a}}{2} A^{a}_{\mu}$$
: covariant derivative;
• $A^{a}_{\mu} (a = 1, 2, ..., 8)$: gluon field carrying color

 F^a_{μν} = ∂_μ A^a_ν - ∂_ν A^a_μ + g_S f^{abc} A^b_μ A^c_ν: Gluonic field strength tensor;

 λ^a: 8 generators of the SU_c(3) group (Gell-Mann matrices)

• g_S : strong coupling constant

Appendix: Symmetries of QCD

Symmetry structure of QCD:

● (approximate) global symmetry $SU_L(N_f) \times SU_R(N_f)$, which is spontaneously broken to $SU_V(N_f)$

$$N_f = 3$$
:

Symmetry	Transformation	Current	Name	Manifestation in nature
$\mathrm{SU}_V(3)$	$\psi ightarrow \exp(irac{\lambda_a lpha_a}{2})\psi$	$V^a_\mu = ar{\psi} \gamma_\mu rac{\lambda_a}{2} \psi$	isospin	approximately conserved
$\mathrm{U}_V(1)$	$\psi ightarrow \exp(i lpha_V) \psi$	$V_{\mu}=ar{\psi}\gamma_{\mu}\psi$	baryonic	always conserved
$SU_A(3)$	$\psi ightarrow \exp(irac{\gamma_5\lambda_a heta_a}{2})\psi$	$A^a_{\mu} = \bar{\psi} \gamma_{\mu} \gamma_5 \frac{\lambda_a}{2} \psi$	chiral	spontaneously broken
$U_A(1)$	$\psi ightarrow \exp(i\gamma_5 lpha_A)\psi$	$A_{\mu}=ar{\psi}\gamma_{\mu}\gamma_{5}\psi$	Axial	" $U_A(1)$ problem"

Appendix: Model and formalism

PNJL model at finite *T*, μ in an external magnetic field *B*

The thermodynamic potential is:

$$\begin{split} \Omega(T,\mu_{f}) &= \mathcal{U}(\Phi,\bar{\Phi},T) - N_{c} \sum_{f=u,d,s} \frac{|q_{f}|eB}{2\pi} \sum_{n=0}^{\infty} \alpha_{n} \int_{-\infty}^{\infty} \frac{dp_{z}}{2\pi} \left(E_{f} \right. \\ &+ \frac{T}{3} \ln \left\{ 1 + 3\bar{\Phi} e^{-(E_{f}-\mu_{f})/T} + 3\Phi e^{-2(E_{f}-\mu_{f})/T} + e^{-3(E_{f}-\mu_{f})/T} \right\} \\ &+ \frac{T}{3} \ln \left\{ 1 + 3\Phi e^{-(E_{f}+\mu_{f})/T} + 3\bar{\Phi} e^{-2(E_{f}+\mu_{f})/T} + e^{-3(E_{f}+\mu_{f})/T} \right\} \right) \\ &+ g_{s} \sum_{\{f=u,d,s\}} \left\langle \bar{q}_{f}q_{f} \right\rangle^{2} - 4g_{D} \left\langle \bar{q}_{u}q_{u} \right\rangle \left\langle \bar{q}_{d}q_{d} \right\rangle \left\langle \bar{q}_{s}q_{s} \right\rangle \end{split}$$

with $E_f = \sqrt{2n|q_f|eB + p_z^2 + M_f^2}$

Parameters and results:

	Parameter set
Physical quantities	and constituent quark masses
$f_{\pi} = 92.4 \mathrm{MeV}$	$m_u = m_d = 5.5 \mathrm{MeV}$
$M_{\pi}=135.0~{\rm MeV}$	$m_s=140.7~{ m MeV}$
$M_K = 497.7~{\rm MeV}$	$\Lambda = 602.3 { m ~MeV}$
$M_{\eta'}=960.8~{\rm MeV}$	$g_S \Lambda^2 = 3.67$
$M_\eta = 514.8~{ m MeV^*}$	$g_D \Lambda^5 = 12.36$
$f_K = 97.7 \mathrm{MeV^*}$	$M_u = M_d = 367.7~{\rm MeV^*}$
$M_\sigma=728.8~{ m MeV}^*$	$M_s=549.5~{ m MeV}^*$
$M_{a_0} = 873.3 { m MeV^*}$	
$M_{\kappa}=1045.4~{\rm MeV^*}$	
$M_{f_0} = 1194.3~{\rm MeV^*}$	
$ heta_P = -5.8^{o*}; heta_S = 16^{o*}$	

- S.P. Klevansky et al., PRC 53 (1996) 410

 $D = C_{0.05} + 1 = DDD = 71 (2005) + 116002$

P. Costa – Café com Física, 10 July 2013 – p. 44/45

PNJL phase diagram

- symmetric matter: $\mu_u = \mu_d = \mu_s$;
- isopsin symmetric matter: $\mu_u = \mu_d$ and $\mu_s = 0$;
- P presently, the isospin asymmetry of matter in HIC corresponds to $\mu_d < 1.1 \mu_u$;
- neutron matter corresponds to $\mu_d \sim 1.2 \mu_u$;
- increasing the isopsin asymmetry moves the CEP to smaller T^{CEP} and larger μ_B^{CEP} . For an asymmetry large enough $(\mu_d > 1.45\mu_u)$ the CEP disappears.