Gluões escaldados numa folha de alface Como se propagam os gluões num meio quente e muito pouco denso?

Paulo Silva, Orlando Oliveira Center for Physics, University of Coimbra

> David Dudal KU Leuven, campus Kortrijk

Pedro Bicudo, Nuno Cardoso CFTP, IST, University of Lisbon

イロト イ押ト イヨト イヨト

Outline

Gluon propagator @ finite T

- Positivity violation and spectral densities
- Gluon mass scales
- Z₃ dependence

Cromodinâmica Quântica

- Teoria das interacções fortes
- Interacção entre quarks mediada por gluões
- Gluões possuem cor ⇒ teoria não-linear
- Dificuldades no limite de baixas energias
 - regime não perturbativo
 - confinamento, simetria quiral
- Lagrangeano

$$\mathcal{L}_{\text{QCD}} = -rac{1}{4} F^a_{\mu
u} F^{a\mu
u} + ar{q}^{af} (i\gamma^\mu D^{ab}_\mu - m_f \delta^{ab}) q^{bf}$$

イロト イポト イヨト イヨト

Funções de Green

 valores expectáveis no vácuo de produtos de operadores de campo ordenados no tempo

$$\mathcal{G}_{j_1\cdots j_n}^{(n)}(x_1,\cdots,x_n)=\langle 0|\mathcal{T}(\hat{\phi}_{j_1}(x_1)\cdots\hat{\phi}_{j_n}(x_n))|0
angle$$

- Formulação dos integrais de caminho
 - Functional gerador

$$Z[J] = \int \prod_{k} \mathcal{D}\phi_{k} \exp\left(i \int d^{4}x(\mathcal{L}[\phi] + J_{k}(x)\phi_{k}(x))\right)$$

• Funções de Green: derivação funcional

Cromodinâmica Quântica na rede

- Formulação que permite:
 - estudar regime não perturbativo
 - simular a QCD num computador
- Ingredientes fundamentais:
 - rede finita de pontos (espaçamento a)
 ⇒ integrais funcionais com dimensão finita
 - formalismo do tempo imaginário t = −ix₄
 Teorias de Campo ≡ Mecânica Estatística 4D

$$\int \mathcal{D}\phi \; \mathbf{e}^{i\mathbf{S}[\phi]}
ightarrow \int \mathcal{D}\phi \; \mathbf{e}^{-\mathbf{S}^{(E)}[\phi]}$$

イロト イポト イヨト イヨト

Campos de gauge na rede

- Links
 - matrizes SU(3) situadas nas linhas orientadas que unem os pontos da rede
 - campos de gauge fundamentais em teorias de gauge na rede.

$$U_\mu(x)=e^{iag_0A_\mu(x+a\hat{e}_\mu/2)}$$

Transformação de gauge nas links

$$U_\mu({m x}) o g({m x}) U_\mu({m x}) g^\dagger({m x}+\hat\mu).$$

Acção de gauge na rede

$$S_{W} = \beta \sum_{\mathbf{x}, \mu > \nu} \left(1 - \frac{1}{N} \operatorname{ReTr}[\Box_{\mu\nu}(\mathbf{x})] \right) \xrightarrow[\mathbf{a} \to 0]{} \int d^{4}x_{\frac{1}{4}} \sum_{\mathbf{a}, \mu, \nu} (F_{\mu\nu}^{\mathbf{a}})^{2} + \mathcal{O}(\mathbf{a}^{2})$$

• Plaquette: $\Box_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+\hat{\mu})U_{\mu}^{\dagger}(x+\hat{\nu})U_{\nu}^{\dagger}(x)$

Cálculo de valores expectáveis na rede

$$\langle A \rangle = \frac{\int \mathcal{D} U A[U] \exp(-S_W[U])}{\int \mathcal{D} U \exp(-S_W[U])}$$

- Integral de dimensão elevada \rightarrow método Monte Carlo
- Estimativa na rede:
 - conjunto de configurações $\{U^{(i)}\}_{i=1}^N$
 - densidade de probabilidade $P(U) = \exp(-S_W[U])$

$$\langle A \rangle = \frac{1}{N} \sum_{i=1}^{N} A(U^{(i)}) + \mathcal{O}(\frac{1}{\sqrt{N}}).$$

• erro estatístico $\sim \frac{1}{\sqrt{N}}$ garantido pelo teorema do limite central

・ロト ・ 日本 ・ 日本 ・ 日本

Hadronic Spectrum from Lattice QCD

Paulo Silva Café com Física, 9 Novembro 2016

CFisUC

▶ < ⊒ >

QCD Phase Diagram

Paulo Silva Café com Física, 9 Novembro 2016

イロト イポト イヨト イヨト

Lattice QCD at finite temperature

expectation values in a heat bath

$$\langle A \rangle = \frac{1}{Z} \mathrm{Tr} \left[\mathbf{e}^{-\beta H} A \right]$$

• thermal Green's function for bosons:

$$\begin{aligned} G(\mathbf{x}, \mathbf{y}; \tau, \mathbf{0}) &= Z^{-1} \mathrm{Tr} \left[\mathbf{e}^{-\beta H} \hat{\phi}(\mathbf{x}, \tau) \hat{\phi}(\mathbf{y}, \mathbf{0}) \right] \\ &= Z^{-1} \mathrm{Tr} \left[\hat{\phi}(\mathbf{y}, \mathbf{0}) \mathbf{e}^{-\beta H} \hat{\phi}(\mathbf{x}, \tau) \right] \\ &= Z^{-1} \mathrm{Tr} \left[\mathbf{e}^{-\beta H} \mathbf{e}^{\beta H} \hat{\phi}(\mathbf{y}, \mathbf{0}) \mathbf{e}^{-\beta H} \hat{\phi}(\mathbf{x}, \tau) \right] \\ &= Z^{-1} \mathrm{Tr} \left[\mathbf{e}^{-\beta H} \mathcal{T}_{\tau} \left(\hat{\phi}(\mathbf{y}, \beta) \hat{\phi}(\mathbf{x}, \tau) \right) \right] \\ &= G(\mathbf{x}, \mathbf{y}; \tau, \beta) \end{aligned}$$

• temperature plays the role of imaginary time $T = \frac{1}{aL_t}$ • $\phi(y, 0) = \phi(y, \beta) \Rightarrow$ Matsubara frequencies $\omega_n = 2\pi nT$

QCD Phase Diagram

- study of the phase diagram of QCD relevant e.g. for heavy ion experiments
- QCD has phase transition where quarks and gluons become deconfined for sufficiently high T
- Polyakov loop
 - order parameter
 - $L = \langle L(\vec{x}) \rangle \propto e^{-F_q/T}$
 - On the lattice:

$$L(\vec{x}) = \operatorname{Tr} \prod_{t=0}^{N_t-1} \mathcal{U}_4(\vec{x}, t)$$

イロト イ押ト イヨト イヨト

QCD Phase Diagram

- study of the phase diagram of QCD relevant e.g. for heavy ion experiments
- QCD has phase transition where quarks and gluons become deconfined for sufficiently high T

• $T < T_c$: $L \neq 0$ (center symmetry) • $T > T_c$: $L \neq 0$ (spontaneous breaking)

Center symmetry

- Wilson gauge action is invariant under a center transformation
- temporal links on a hyperplane $x_4 = const$ multiplied by

$$z \in Z_3 = \{e^{-i2\pi/3}, 1, e^{i2\pi/3}\}$$

- Polyakov loop L(x) → zL(x)
 T < T_c
 - local P_L phase equally distributed among the three sectors

$$L = \langle L(\vec{x}) \rangle \approx 0$$

- $T > T_c$
 - Z_3 sectors not equally populated: $L \neq 0$

G. Endrödi, C. Gattringer, H.-P. Schadler, arXiv:1401.7228 C. Gattringer, A. Schmidt, JHEP 01, 051 (2011) C. Gattringer, Phys. Lett. B 690, 179 (2010) F. M. Stokes, W. Kamleh, D. B. Leinweber, arXiv:1312.0991 CFisUC Café com Física, 9 Novembro 2016

QCD Green's functions

- In a Quantum Field Theory, knowledge of all Green's functions allows a complete description of the theory
- In QCD, propagators of fundamental fields (e.g. quark, gluon and ghost propagators) encode information about non-perturbative phenomena
 - In particular, gluon propagator encodes information about confinement/deconfinement
- Since the gluon propagator is a gauge dependent quantity, we need to choose a gauge

• in our works: Landau gauge $\partial_{\mu}A_{\mu} = 0$

イロト イ押ト イヨト イヨト

Positivity violation and spectral densities Gluon mass scales Za dependence

Gluon propagator at zero temperature

- Definition $D^{ab}_{\mu
 u}(\hat{q})=rac{1}{V}\langle A^a_\mu(\hat{q})A^b_
 u(-\hat{q})
 angle$
- Tensor structure

$$D^{ab}_{\mu
u}(q) = \delta^{ab} \left(\delta_{\mu
u} - rac{q_\mu q_
u}{q^2}
ight) D(q^2)$$

A. G. Duarte, O. Oliveira, PJS, Phys.Rev. D94 (2016) 014502

イロト 不得 とくほ とくほう

Introduction and Motivation Gluon propagator @ finite T Conclusions and Outlook Conclusions and Outlook

Positivity violation and spectral densities Gluon mass scales Z₂ dependence

Gluon propagator at finite temperature

- Two components:
 - transverse D_T
 - longitudinal D_L

$$\mathcal{D}^{ab}_{\mu
u}(\hat{q}) = \delta^{ab} \left(\mathcal{P}^{\mathcal{T}}_{\mu
u} \mathcal{D}_{\mathcal{T}}(q_4^2, ec{q}) + \mathcal{P}^{\mathcal{L}}_{\mu
u} \mathcal{D}_{\mathcal{L}}(q_4^2, ec{q})
ight)$$

$$egin{split} D_T(q^2) &= rac{1}{2\,V(N_c^2-1)}\left(\langle A^a_i(q)A^a_i(-q)
angle - rac{q_4^2}{ec q^2}\langle A^a_4(q)A^a_4(-q)
angle
ight)\ D_L(q^2) &= rac{1}{V(N_c^2-1)}\left(1+rac{q_4^2}{ec q^2}
ight)\langle A^a_4(q)A^a_4(-q)
angle \end{split}$$

• Finite temperature on the lattice: $L_t \ll L_s$

$$T=\frac{1}{aL_t}$$

Positivity violation and spectral densities Gluon mass scales Z₃ dependence

Lattice setup finite T

Temp. (MeV)	β	Ls	Lt	a [fm]	1/a (GeV)
121	6.0000	64	16	0.1016	1.943
162	6.0000	64	12	0.1016	1.943
194	6.0000	64	10	0.1016	1.943
243	6.0000	64	8	0.1016	1.943
260	6.0347	68	8	0.09502	2.0767
265	5.8876	52	6	0.1243	1.5881
275	6.0684	72	8	0.08974	2.1989
285	5.9266	56	6	0.1154	1.7103
290	6.1009	76	8	0.08502	2.3211
305	5.9640	60	6	0.1077	1.8324
305	6.1326	80	8	0.08077	2.4432
324	6.0000	64	6	0.1016	1.943
366	6.0684	72	6	0.08974	2.1989
397	5.8876	52	4	0.1243	1.5881
428	5.9266	56	4	0.1154	1.7103
458	5.9640	60	4	0.1077	1.8324
486	6.0000	64	4	0.1016	1.943

- Simulations: use of Chroma and PFFT libraries
- keep a constant (spatial) physical volume $\sim (6.5 fm)^3$
- all data renormalized at µ = 4GeV
- O. Oliveira, PJS, PoS(LATTICE2012)216

Acta Phys.Polon.Supp. 5 (2012) 1039

・ロト ・ 同ト ・ ヨト ・ ヨト

PoS(Confinement X)045

Positivity violation and spectral densities Gluon mass scales Z₃ dependence

Surface plots

Transverse component

Paulo Silva Café com Física, 9 Novembro 2016

Positivity violation and spectral densities Gluon mass scales Z_3 dependence

Outline

Gluon propagator @ finite T
 Positivity violation and spectral densities

- Gluon mass scales
- Z₃ dependence

 Introduction and Motivation
 Positivity violation and spectral densities

 Gluon propagator @ finite T
 Gluon mass scales

 Conclusions and Outlook
 Z₃ dependence

Spectral density

 Euclidean momentum-space propagator of a (scalar) physical degree of freedom

$$\mathcal{G}({\it p}^2)\equiv \langle \mathcal{O}({\it p})\mathcal{O}(-{\it p})
angle$$

• Källén-Lehmann spectral representation

$$\mathcal{G}(p^2) = \int_0^\infty \mathrm{d}\mu rac{
ho(\mu)}{p^2 + \mu}\,, \qquad ext{with }
ho(\mu) \geq 0 ext{ for } \mu \geq 0\,.$$

 spectral density contains information on the masses of physical states described by the operator O

Positivity violation and spectral densities Gluon mass scales Z_3 dependence

Spectral density: motivation

- Main goal: compute the spectral density of gluons and other (un)physical degrees of freedom
 - important for e.g. DSE/BSE spectrum studies (Minkowski space)
 - spectral density is not strictly positive
 - traditional Maximum Entropy Method does not allow negative spectral densities
- Way out: Tikhonov regularization plus Morozov discrepancy principle

D. Dudal, O. Oliveira, PJS, PRD 89 (2014) 014010

イロト イポト イヨト イヨト

Positivity violation and spectral densities Gluon mass scales Z_3 dependence

Positivity violation

Spectral representation

$$\mathcal{D}(\mathcal{p}^2) = \int_0^{+\infty} d\mu rac{
ho(\mu)}{\mathcal{p}^2+\mu^2}$$

On the lattice: study the temporal correlator

$$C(t) = \int_{-\infty}^{\infty} \frac{d\rho}{2\pi} D(\rho^2) \exp(-i\rho t) = \int_{0}^{\infty} d\omega \rho(\omega^2) e^{-\omega t}$$

C(t) < 0

- negative spectral density
- positivity violation
- gluon confinement
- C(t) > 0 says nothing about $ho(\mu)$

イロト イポト イヨト イヨト

Positivity violation and spectral densities Gluon mass scales Z₂ dependence

Positivity violation for the gluon propagator

Already observed in lattice simulations

C. Aubin, M. C. Ogilvie, Phys. Rev D70, 074514 (2004)

イロト イポト イヨト イヨト

A. Cucchieri, T. Mendes, A. R. Taurines, Phys. Rev. D71, 051902 (2005)

Positivity violation and spectral densities Gluon mass scales Z_3 dependence

Positivity violation finite T - longitudinal component

Paulo Silva Café com Física, 9 Novembro 2016

・ロト ・ 同ト ・ ヨト ・ ヨト

Positivity violation and spectral densities Gluon mass scales Z₃ dependence

Positivity violation finite T - transverse component

Paulo Silva Café com Física, 9 Novembro 2016

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Positivity violation and spectral densities Gluon mass scales Z₂ dependence

Positivity violation scale – transverse component

CFisUC

э

Positivity violation and spectral densities Gluon mass scales Z₂ dependence

Longitudinal propagator spectral densities

Positivity violation and spectral densities Gluon mass scales Z_3 dependence

Outline

Gluon propagator @ finite T Positivity violation and spectral densities Gluon mass scales

Z₃ dependence

Positivity violation and spectral densities Gluon mass scales Z₂ dependence

Why gluon mass?

• At T = 0 we have colour screening and flux tubes,

J. M. Cornwall, Phys. Rev. D 26, 1453 (1982) N. Cardoso, P. Bicudo, Phys. Rev. D 87, 034504 (2013) N. Cardoso, M. Cardoso, P. Bicudo [arXiv:1302.3633 [hep-lat]]

• at large T Debye screening,

M. Doring, K. Hubner, O. Kaczmarek, and F. Karsch, Phys. Rev. D 75, 054504 (2007)
 M. Bluhm, B. Kampfer and K. Redlich, Phys. Rev. C 84, 025201 (2011)

• at T_c a mass scale in the π and K multiplicities in heavy ions

P. Bicudo, F. Giacosa, E. Seel Phys.Rev. C86, 034907 (2012) CFisUC

・ロト ・ 同ト ・ ヨト ・ ヨト

Positivity violation and spectral densities Gluon mass scales Z₃ dependence

Gluon mass at finite T

PJS, O. Oliveira, P. Bicudo, N. Cardoso, Phys.Rev. D89 (2014) 074503

・ロト ・ 同ト ・ ヨト ・ ヨト

Paulo Silva

Positivity violation and spectral densities **Gluon mass scales** Z_3 dependence

Gluon mass at finite T

for a better IR ansatz, we fit
 D_i using a Yukawa fit with
 mass *M*

$$D_i(p^2) = \frac{Z}{p^2 + m^2}$$

and look for the largest fitting range p_{max}

- this fits quite well D_L
- the Yukawa does not fit D_T

Fits of the longitudinal propagator

T	p _{max}	Z_L	ML	$\chi^2/d.o.f.$
121	0.467	4.28(16)	0.468(13)	1.91
162	0.570	4.252(89)	0.3695(73)	1.66
194	0.330	5.84(50)	0.381(22)	0.72
243	0.330	8.07(67)	0.374(21)	0.27
260	0.271	8.73(86)	0.371(25)	0.03
265	0.332	7.34(45)	0.301(14)	1.03
275	0.635	3.294(65)	0.4386(83)	1.64
285	0.542	3.12(12)	0.548(16)	0.76
290	0.690	2.705(50)	0.5095(85)	1.40
305	0.606	2.737(80)	0.5900(32)	1.30
324	0.870	2.168(24)	0.5656(63)	1.36
366	0.716	2.242(55)	0.708(13)	1.80
397	0.896	2.058(34)	0.795(11)	1.03
428	1.112	1.927(24)	0.8220(89)	1.30
458	0.935	1.967(37)	0.905(13)	1.45
486	1.214	1.847(24)	0.9285(97)	1.55

・ロト ・ 同ト ・ ヨト ・ ヨト

Café com Física, 9 Novembro 2016

Positivity violation and spectral densities Gluon mass scales Z₂ dependence

Gluon mass at finite T

Positivity violation and spectral densities Gluon mass scales Z_3 dependence

Outline

2 Gluon propagator @ finite T

- Positivity violation and spectral densities
- Gluon mass scales
- Z₃ dependence

Positivity violation and spectral densities Gluon mass scales Z_3 dependence

Z_3 dependence

- D_L and D_T show quite different behaviours with T
- Usually, the propagator is computed such that arg(P_L) < π/3 (Z₃ sector 0)
- what happens in the other sectors?

PJS, O. Oliveira, PRD 93 (2016) 114509

イロト イポト イヨト イヨト

Introduction and Motivation Gluon propagator @ finite T Conclusions and Outlook Z₃ dependence Z_3 dependence for each configuration,

3 gauge fixings after a Z_3 transformation

 $\mathcal{U}_4'(\vec{x}, t=0) = z \mathcal{U}_4(\vec{x}, t=0)$

configurations classified according to $\langle L \rangle = |L|e^{i\theta}$

 $\theta = \begin{cases} -\pi < \theta \le -\frac{\pi}{3}, & \text{Sector -1}, \\ -\frac{\pi}{3} < \theta \le \frac{\pi}{3}, & \text{Sector 0}, \\ \frac{\pi}{3} < \theta \le \pi, & \text{Sector 1} \end{cases}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Positivity violation and spectral densities Gluon mass scales Z_3 dependence

Typical result at high T (324 MeV)

Paulo Silva Café com Física, 9 Novembro 2016

イロト 不得 とくほ とくほう

Positivity violation and spectral densities Gluon mass scales Z_3 dependence

What happens near T_c ?

- spatial physical volume $\sim (6.5 {\rm fm})^3$
- 100 configs per ensemble

Coarse lattices $a \sim 0.12 fm$

Temp.	$L_s^3 \times L_t$	β	а	Lsa
(MeV)			(fm)	(fm)
265.9	$54^3 imes 6$	5.890	0.1237	6.68
266.4	$54^3 imes 6$	5.891	0.1235	6.67
266.9	$54^3 imes 6$	5.892	0.1232	6.65
267.4	$54^3 imes 6$	5.893	0.1230	6.64
268.0	$54^3 imes 6$	5.8941	0.1227	6.63
268.5	$54^3 imes 6$	5.895	0.1225	6.62
269.0	$54^3 imes 6$	5.896	0.1223	6.60
269.5	$54^3 imes 6$	5.897	0.1220	6.59
270.0	$54^3 imes 6$	5.898	0.1218	6.58
271.0	$54^3 imes 6$	5.900	0.1213	6.55
272.1	$54^3 imes 6$	5.902	0.1209	6.53
273.1	$54^3 imes 6$	5.904	0.1204	6.50

Fine lattices $a \sim 0.09 fm$				
Temp.	$L_s^3 \times L_t$	β	а	Lsa
(MeV)	-		(fm)	(fm)
269.2	$72^3 imes 8$	6.056	0.09163	6.60
270.1	$72^3 imes 8$	6.058	0.09132	6.58
271.0	$72^3 imes 8$	6.060	0.09101	6.55
271.5	$72^3 imes 8$	6.061	0.09086	6.54
271.9	$72^3 imes 8$	6.062	0.09071	6.53
272.4	$72^3 imes 8$	6.063	0.09055	6.52
272.9	$72^3 imes 8$	6.064	0.09040	6.51
273.3	$72^3 imes 8$	6.065	0.09025	6.50
273.8	$72^3 imes 8$	6.066	0.09010	6.49
_				

・ロット (雪) (山) (山)

э

 Introduction and Motivation
 Positivity violation and spectral densities

 Gluon propagator @ finite T
 Gluon mass scales

 Conclusions and Outlook
 Z₃ dependence

How-to

Conical cut for momenta above 1GeV; all data below 1GeV

Renormalization:

$$D_{L,T}(\mu^2) = Z_R D_{L,T}^{Lat}(\mu^2) = 1/\mu^2$$

- Renormalization scale: $\mu = 4 \text{ GeV}$
- D_L and D_T renormalized independently
 - within each Z(3) sector, $Z_R^{(L)}$ and $Z_R^{(T)}$ agree within errors
- each Z₃ sector is renormalized independently
 - Z_R do not differ between the different Z(3) sectors

イロト イ押ト イヨト イヨト

Positivity violation and spectral densities Gluon mass scales Z_3 dependence

Coarse lattices, below T_c

Paulo Silva Café com Física, 9 Novembro 2016

イロト 不得 とくほ とくほう

Positivity violation and spectral densities Gluon mass scales Z_3 dependence

Fine lattices, below T_c

Paulo Silva Café com Física, 9 Novembro 2016

イロト 不得 とくほ とくほう

Positivity violation and spectral densities Gluon mass scales Z_3 dependence

Coarse lattices, above T_c

CFisUC

(< ≥) < ≥)</p>

Positivity violation and spectral densities Gluon mass scales Z_3 dependence

Fine lattices, above T_c

イロト 不得 とくほ とくほう

Positivity violation and spectral densities Gluon mass scales

 Z_3 dependence

Polyakov loop history

Positivity violation and spectral densities Gluon mass scales

 Z_3 dependence

Polyakov loop history

Positivity violation and spectral densities Gluon mass scales Z_3 dependence

Removing configurations in wrong phase

Coarse lattices

Conclusions and Outlook

- Extensive study of the gluon propagator at finite temperature
- Positive violation and spectral densities
- Mass scales
- Z₃ dependence
 - Correlation between L and the separation of D between the different sectors can be used to identify the phase transition
 - Possible existence of different phases near and above T_c
 - The dynamics differs in each sector
 - Outlook:
 - understand physics of different sectors (e.g. mass scales)
 - how quarks change the above picture?
 - look at the distribution of eigenvalues of the Dirac operator

Gattringer, Rakow, Schafer, Soldner, PRD66(2002)054502

< □ > < 同 > < 回 > < 回 > < 回

