NEUTRON STARS: ASTROPHYSICAL LABORATORIES FOR NUCLEAR PHYSICS

MORGANE FORTIN Centrum Astronomiczne im. Mikołaja Kopernika PAN

Café com Física Departamento de Física, Universidade de Coimbra October 25, 2016

Poland

Source : Wikipedia

Some data:

- parliamentary republic
- president: Andrzej Duda
- prime minister: Beata Szydło
- capital: Warsaw
- 3 times larger than Portugal
- 4 times more populated than Portugal
- currency: złoty
- religion: mostly Roman Catholicism

Polish

- slavic language but latin alphabet
- hello: dzień dobry
- thank: dziękuję
- goodbye: do widzenia

Warsaw

Pałac Kultury i Nauki (Wikipedia)

Stare miasto (Wikipedia)

NewCompstar conference on neutron stars and supernovæ

last week of March 2017, in Warsaw ©

Neutron stars: general aspects

Discovery of neutron stars (NSs)

From theoretical predictions ...

Yakovlev et al., arXiv:1210.0682 (2012)

- Feb. 1931 : anticipation of the idea of NSs by Lev Landau :
 - calculation of the maximum mass of white dwarfs;
 - prediction the existence of dense stars which look like giant atomic nuclei.
- end of Jan. 1932 : experiments by Chadwick and discovery of the neutron.
- Feb. 27, 1932 : publication of Chadwick's paper.
- Feb. 29, 1932 : publication of Landau's paper.
- Dec. 15, 1933 : Baade & Zwicky:

"supernovæ represent the transitions from ordinary stars to neutron stars, which in their final stages consist of extremely closely packed neutrons".

Discovery of neutron stars (NSs)

... to observations

Haensel et al.'s book (2007)

- ► 1967 : observation by chance by Bell (Hewish's graduate student) of very stable radio pulses with P = 1.3373012 s → artificial origin, created by space satellites or extraterrestrial civilization?
- ▶ Feb. 24, 1968 : publication of the paper in Nature:
 - the source is called "pulsar" meaning "Pulsating Source of Radio",
 - the source might be an oscillating white dwarf or NS.
- May 1968 : Gold, Nature : pulsar = rotating NS.

▶ 1974 : Nobel Prize to Hewish (only) for the discovery of pulsars.

Period of the pulses = spin period P of the pulsar. All PSRs are NSs but not all NSs are seen as PSRs.

Discovery of neutron stars (NSs)

... to observations

Haensel et al.'s book (2007)

- ► 1967 : observation by chance by Bell (Hewish's graduate student) of very stable radio pulses with P = 1.3373012 s → artificial origin, created by space satellites or extraterrestrial civilization?
- Feb. 24, 1968 : publication of the paper in Nature:
 - the source is called "pulsar" meaning "Pulsating Source of Radio",
 - the source might be an oscillating white dwarf or NS.
- May 1968 : Gold, Nature : pulsar = rotating NS.

▶ 1974 : Nobel Prize to Hewish (only) for the discovery of pulsars.

Period of the pulses = spin period P of the pulsar. All PSRs are NSs but not all NSs are seen as PSRs.

What is a neutron star?

Origin

Remnant from the gravitational collapse of a \sim 10 M_{\odot} star during a Type II, Ib, Ic supernova event.

Properties

- mass $M \sim 1.4 \text{ M}_{\odot}$ (M_{\odot} = 10³⁰ kg),
- radius *R* ~ 10 km,
- compactness <u>GM</u> <u>Bc²</u> ~ 0.2,
- average density $\bar{\rho} \sim 10^{18} \text{ kg m}^{-3}$,
- magnetic field $B \sim 10^4 10^{14}$ T.

 \Rightarrow relativistic objects sustained by the strong interaction.

Crab Nebula hosting a pulsar

Credits : NASA/ESA.

Observations

 \sim 2000 NSs from radio to $\gamma\text{-rays},$ a majority as radio pulsars.

 \sim 5% of them in a binary with a companion star.

NSs undergo a regular spin-down ie. an increase \dot{P} of their spin period P:

Several types of emission

- PSR: radio or γ-ray pulsars,
- INS: X-ray pulses, no radio pulses,
- AXP/SGR: bursts observed in X- or γ-rays,
- RRAT: radio bursts.

Toy model

Magnetic dipole :

 spin-down due to emission of electromagnetic radiation.

 $P - \dot{P}$ diagram. Data from ATNF pulsar catalog. MORGANE FORTIN (CAMK)

NSs undergo a regular spin-down ie. an increase \dot{P} of their spin period P:

Several types of emission

- PSR: radio or γ-ray pulsars,
- INS: X-ray pulses, no radio pulses,
- AXP/SGR: bursts observed in X- or γ-rays,
- RRAT: radio bursts.

Toy model

Magnetic dipole :

- spin-down due to emission of electromagnetic radiation.
- estimate of the magnetic field :

$$B = \left(\frac{3c^3I}{8\pi^2R^6}P\dot{P}\right)^1$$

 $P-\dot{P}$ diagram. $I=10^{45}~{
m g~cm^2},~R=10~{
m km}.$ MORGANE FORTIN (CAMK)

NSs undergo a regular spin-down ie. an increase \dot{P} of their spin period P:

Several types of emission

- PSR: radio or γ-ray pulsars,
- INS: X-ray pulses, no radio pulses,
- AXP/SGR: bursts observed in X- or γ-rays,
- RRAT: radio bursts.

Toy model

Magnetic dipole :

- spin-down due to emission of electromagnetic radiation.
- estimate of the magnetic field : $B = \left(\frac{3c^3l}{8\pi^2 R^6} P\dot{P}\right)^{1/2}$

• estimate of the age :
$$\tau = \frac{P}{2\dot{P}}$$

 $P-\dot{P}$ diagram. $I=10^{45}~{
m g~cm^2},\,R=10~{
m km}.$ MORGANE FORTIN (CAMK)

NSs undergo a regular spin-down ie. an increase \dot{P} of their spin period P:

$$P - \dot{P}$$
 diagram.
 $I = 10^{45} \text{ g cm}^2, R = 10 \text{ km}$
MORGANE FORTIN (CAMK)

Several types of emission

- PSR: radio or γ -ray pulsars,
- INS: X-ray pulses, no radio pulses,
- AXP/SGR: bursts observed in X- or γ-rays,
- RRAT: radio bursts.

Toy model

Magnetic dipole :

- spin-down due to emission of electromagnetic radiation.
- estimate of the magnetic field : $B = \left(\frac{3c^3 l}{8\pi^2 R^6} P \dot{P}\right)^{1/2}$
- estimate of the age : $\tau = \frac{P}{2\dot{P}}$
- (model-dependent) death line : below the line, electromagnetic emission stops.

Two main types of pulsars

	Normal	Millisecond (MSP)
P (s)	1	0.03
<i>B</i> (G)	10 ¹²	10 ⁸
au (yrs)	10 ⁷	10 ⁹

$P - \dot{P}$ diagram. $I = 10^{45}$ g cm², R = 10 km.

Two main types of pulsars

	Normal	Millisecond (MSP)
P (s)	1	0.03
<i>B</i> (G)	10 ¹²	10 ⁸
au (yrs)	10 ⁷	10 ⁹

Normal pulsars

NSs born fastly rotating, spun down by the radio emission until they cross the death line.

$P - \dot{P}$ diagram. $I = 10^{45} \text{ g cm}^2, R = 10 \text{ km}.$

Two main types of pulsars

	Normal	Millisecond (MSP)
P (s)	1	0.03
<i>B</i> (G)	10 ¹²	10 ⁸
au (yrs)	10 ⁷	10 ⁹

Normal pulsars

NSs born fastly rotating, spun down by the radio emission until they cross the death line.

$$P - \dot{P}$$
 diagram.
 $I = 10^{45}$ g cm², $R = 10$ km.

Two main types of pulsars

	Normal	Millisecond (MSP)
P (s)	1	0.03
<i>B</i> (G)	10 ¹²	10 ⁸
au (yrs)	10 ⁷	10 ⁹

Normal pulsars

NSs born fastly rotating, spun down by the radio emission until they cross the death line.

Millisecond pulsars

Old pulsars rejuvenated by the accretion of matter from a binary companion.

Structure

Nuclear saturation density: $n_0 = 0.16 \text{ fm}^{-3}$

Problem

NS matter not accessible in terrestrial laboratories ...

Envelope

 Plasma whose composition determines the spectrum of the NS emission.

Crust

- Gas of electrons,
- lattice of neutron-rich ions,
- at larger densities free neutrons (superfluid?).

Nuclei in lab. vs. NS crust

Structure

Nuclear saturation density: $n_0 = 0.16 \text{ fm}^{-3}$

?=

- nucleons,
- hyperons (baryons with a least one s quark),
- quark matter (deconfined d, u and s),
- pion or kaon condensation, ...

MORGANE FORTIN (CAMK)

Envelope

 Plasma whose composition determines the spectrum of the NS emission.

Crust

- Gas of electrons,
- lattice of neutron-rich ions,
- at larger densities free neutrons (superfluid?).

Outer core

- Free neutrons and protons (superfluid?),
- electrons,
- muons.

Inner core

▶ ?

Equation of state

Mystery : equation of state (EoS)

- Describes the composition and properties of NS matter;
- P(n) with P the pressure and n the baryon density.

NS matter

Many-body system of stronglyinteracting particles (*e*, *p*, *n*, μ , more?) at zero temperature (thermal energy \ll nucleon Fermi energy).

Two approaches:

- phenomelogical models with effective interactions with parameters adjusted to nuclear and astrophysical quantities,
- ab-initio approaches: 'solving' the many body problem starting with 2 (and 3)-body interactions.

Mass-radius diagram

EoSs for nucleonic matter (blue), exotic matter (pink) and strange quark matter (green).

Equation of state

Mystery : equation of state (EoS)

- Describes the composition and properties of NS matter;
- P(n) with P the pressure and n the baryon density.

NS structure

A given EoS

- + hydrostatic equil. in GR (TOV equations)
- a specific mass-radius (M-R) relation.

Key point

How to constrain the EoS and thus the properties of the nuclear interaction at large densities thanks to NS observations ?

Mass-radius diagram

EoSs for nucleonic matter (blue), exotic matter (pink) and strange quark matter (green).

Astrophysical constraints on the EoS

Keplerian orbital elements

- orbital period P_b,
- time of periastron passage T₀,
- eccentricity e,
- projected semi-major axis x(i),
- angle of periastron ω;
 - \Rightarrow mass function $f_1(M, m_c, i)$.

Relativistic phenomena

- precession of periastron,
- orbital decay,
- gravitational redshift and time dilation,
- Shapiro delay;
 - \Rightarrow 2 additional quantities.

MORGANE FORTIN (CAMK)

NEUTRON STARS: ASTROPHYSICAL LABORATORIES FOR NUCLEAR PHYSICS

Theory

- each EoS has a maximum mass M_{max};
- $\blacktriangleright M_{\max} \ge M_{\max}^{\text{obs}}.$

PSR J1614-2230

Demorest et al., Nature (2010) Shapiro delay : *r* & *s* parameters (nearly edge-on binary system)

 $M_{
m max}^{
m obs} = 1.97 \pm 0.04 \ M_{\odot}.$

PSR J0348+0432

Antoniadis et al., Science (2013)

 $M_{
m max}^{
m obs} =$ 2.01 \pm 0.04 M $_{\odot}$

but model-dependent ...

Mass-radius diagram

EoSs for nucleonic matter (blue), exotic matter (pink) and strange quark matter (green).

Equation of state

M - R plot

Equation of state

M - R plot

Hyperons

- reduce the pressure in the inner core. ie. softening of the EoS;
- reduce the maximum mass.

Claims that $M_{\text{max}} \ge 2 M_{\odot}$ rules out hyperonic EoSs ... but it is possible to build some hyperonic EoS with $M_{\text{max}} \ge 2 M_{\odot}$.

Astrophysical constraints: redshift

Surface gravitational redshift z_g

$$\frac{M}{R} = \frac{c^2}{2G} \left[1 - (1+z_g)^{-2} \right]$$

If M known \rightarrow a single point in the (M, R) plane.

EXO 0748-676

 Cottam et al., Nature (2002) : narrow absorption lines in the spectra of X-ray bursts with

$$z_g = 0.35.$$

 Lin et al., ApJ (2010) : lines do not come from the surface.

Mass-radius diagram

Thermal emission of isolated NSs

Dependence of the fit on many parameters :

- chemical composition of the envelope,
- magnetic field B,
- distance to the source,
- ▶

 \rightarrow not precise enough measurements : eg. CasA NS (Ho et al., Nature 2009).

Mass-radius diagram

Quiescent thermal emission of accreting NSs

Low *B* and accreted atmosphere. Determination of the radius observed at infinity :

$$R_{\infty}=rac{R}{\sqrt{1-2GM/(Rc^2)}}$$

if the distance is accurately known eg. for NSs in globular clusters (GCs).

Results

- NGC 6397: H atmosphere vs. He atmosphere Heinke et al., MNRAS (2014)
- QXT-1: based on 6 objects, only H atmosphere Guillot & Rutledge, ApJ (2014)
- QXT-1+He: possibility of He atmosphere for NGC 6397 Heinke et al., MNRAS (2014)

Limitations

- ► H or He atmosphere? He model gives R_∞ ~50% larger than H model.
- Large uncertainty in the interstellar absorption (N_H parameter).
- Lack for precise distance measurements. Athena and Gaia may help.

Very powerful X-bursts from accreting NSs

- = photospheric radius expansion bursts,
- strong enough to lift up the outer layers of the NS.

Limitations

eg. Özel et al. papers Steiner et al., ApJ (2010) Suleimanov et al., ApJ (2011)

 uncertainties in the modelling of the burst and the composition of the atmosphere.

4U 1724-307

- Suleimanov et al., ApJ (2011)
- Nättilä, Suleimanov et al. arXiv:1509.06561
- Özel et al. arXiv:1505.05155

Very powerful X-bursts from accreting NSs

- = photospheric radius expansion bursts,
- strong enough to lift up the outer layers of the NS.

Limitations

eg. Özel et al. papers Steiner et al., ApJ (2010) Suleimanov et al., ApJ (2011)

 uncertainties in the modelling of the burst and the composition of the atmosphere.

Fitting the X-ray emission from radio millisecond pulsars

PSR J0437-4715 Bogdanov, ApJ (2013):

- Rotating NS with
- H atmosphere and
- two hot spots corresponding to the magnetic polar caps,
- fitting with the X-ray pulse profile.
- + mass known from radio observations: $M = 1.76 \pm 0.2 \text{ M}_{\odot}.$
- $\rightarrow R > 12.29 \text{ km} (2\sigma)$
- ▶ new mass measurement from Freire et al. (unpublished): $M = 1.44 \pm 0.07 \text{ M}_{\odot}$ $\rightarrow R > 12.21 \text{ km } (2\sigma)$

Fitting the spectrum of

- X-ray emission from radio millisecond pulsars (RP-MSP);
- the quiescent thermal emission of accreting NSs (QXT);
- X-bursts from accreting NSs (BNS).

Based on most the recent publications. Adapted from Haensel et al. EPJA (2015)

- RP-MSP: Bodganov, ApJ (2013)
- BNS-1: Nättilä et al. arXiv:1509.06561
- BNS-2: Güver & Özel, ApJ (2013)
- QXT-1: Guillot & Rutledge, ApJ (2014)
- BNS+QXT: Steiner et al., ApJ (2013)

Conclusion

- inconsistency (see QXT-1 and RP-MSP),
- many remaining uncertainties in the modelling,
- ► inclusion of rotation: effect ≃ 10%.
- ▶ future X-ray telescopes (NICER, Athena, LOFT?): M − R constraints with a precision of ~ 5%

Astrophysical constraints?

Radius15 conference

Montreal (CA), July 2015. Consensus: R = 9 - 14 km \Leftrightarrow zero constraint!

Conclusion

No constraining measurements so far except the 2 M_{\odot} NSs. But :

- More precise observations from the next generation of X-ray satellites;
- Other promising techniques eg. gravitational wave detection

Mass-radius diagram

Thermal evolution of neutron stars

Cooling of isolated NSs

t = 0

► *T* ~ 10⁹ − 10¹⁰ K.

Evolution of the temperature profile

 $t \sim 1$ year

- the core cools by ν-emission,
- the crust by heat diffusion.

ightarrow crust properties.

- $t \lesssim 10^5 {
 m years}$
 - thermal balance between the core and the crust,
 - cooling by ν-emission;
- \rightarrow core properties.

 $t\gtrsim 10^5~{
m years}$

 cooling via emission of photons from the surface.

Non-superfluid 1.4 M_{\odot} NS model.

Cooling of isolated NSs

t = 0

T ∼ 10⁹ − 10¹⁰ K.

 $t \sim 1$ year

- the core cools by ν-emission,
- the crust by heat diffusion.
- \rightarrow crust properties.
- $t \lesssim 10^5 {
 m years}$
 - thermal balance between the core and the crust,
 - cooling by ν-emission;
- \rightarrow core properties.
- $t\gtrsim 10^5~{
 m years}$
 - cooling via emission of photons from the surface.

Evolution of the surface temperature

Non-superfluid 1.4 M_{\odot} NS model.

Observations of isolated NSs

X-ray telescopes eg. XMM-Newton, Chandra, AstroH, NuStar, Athena, ...

Biases

- small objects: detection of NSs with T ~ 10⁵ - 10⁷ K within few kpc
- middle-aged NSs with extended supernova remnant.

Age and temperature determination

- age: uncertain unless the supernova as been observed in the past (cf. Crab pulsar): estimation from spin-down or modelling the expansion of the supernova remnant.
- temperature: composition of the envelope unknown: H, He, Fe ?

Observational data

Observations of isolated NSs

X-ray telescopes eg. XMM-Newton, Chandra, AstroH, NuStar, Athena, ...

Biases

- small objects: detection of NSs with T ~ 10⁵ - 10⁷ K within few kpc
- middle-aged NSs with extended supernova remnant.

Age and temperature determination

- age: uncertain unless the supernova as been observed in the past (cf. Crab pulsar): estimation from spin-down or modelling the expansion of the supernova remnant.
- temperature: composition of the envelope unknown: H, He, Fe ?

Constraints?

Too many uncertainties:

- the mass
- the atmosphere composition
- the age
- the distance

▶ ...

to have constraints.

Plus dramatic effect of the magnetic field (see eg. Viganó et al. MNRAS 2013) \rightarrow modeling of the magneto-thermal evolution.

Cooling of an isolated NS?

Cassiopeia A neutron star

- one of the youngest-known SN remnants in the Milky Way,
- SN most probably observed by John Flamsteed in 1680 (agreement with the expansion of the remnant),
- age = 330 ± 20 yr,
- distance d = $3.4^{+0.3}_{-0.1}$ kpc.

Ho & Heinke, Nature (2009) :

the compact object is a neutron star with a carbon atmosphere.

 \rightarrow First determination of the atmosphere composition of an isolated NS.

Cooling of an isolated NS?

Cassiopeia A neutron star

- one of the youngest-known SN remnants in the Milky Way,
- SN most probably observed by John Flamsteed in 1680 (agreement with the expansion of the remnant),
- age = 330 ± 20 yr,
- distance d = $3.4^{+0.3}_{-0.1}$ kpc.

Ho & Heinke, Nature (2009) :

the compact object is a neutron star with a carbon atmosphere.

 \rightarrow First determination of the atmosphere composition of an isolated NS.

Heinke & Ho, ApJL (2010) :

Analysis of 10 years of X-ray observations :

Data from Shternin et al., MNRAS (2011). \rightarrow First direct observation of the cooling of an isolated NS.

Cassiopeia A neutron star

Shternin et al., MNRAS (2011) & Page et al., PRL (2011)

Two ingredients :

- ▶ recent triggering of the PBF process due to neutron ${}^{3}P_{2}$ superfluidity : $T_{\rm C} \sim 5 - 9 \times 10^{8}$ K,
- the protons are already superfluid (in the¹S₀ channel) : T_C ~ 10⁹ K.

 \rightarrow first direct evidence for superfluidity in the core of neutron stars.

Posselt et al., ApJ (2013)

- re-analysis of two observations with their own model of C atmosphere and taking into account instrumental effects;
- \rightarrow NO temperature decline at all ...

Modeling of the observations :

Figure : Cooling curves of a 1.65 M_{\odot} star for different superfluid properties in the core. From Shternin et al., MNRAS (2011)

Thermal relaxation

= after end of accretion

Quasi-Persistent X-Ray Transients

Two phases:

- accretion during ~ years to decades,
- quiescence when accretion stops.

Deep crustal heating scenario

While the accreted matter sinks into the crust, it undergoes a series of reactions that heats the crust.

KS & MXB

Shternin et al., MNRAS (2007); Brown & Cumming, ApJ (2009) :

- exclude a very efficient ν-process (dURCA) in the core,
- crystalline crust with superfluid neutrons.

Thermal relaxation

= after end of accretion

New type of source: normal transient

IGR J17480-2446 in Terzan 5 (Degenaar et al., ApJ 2013): accreted during \sim 10 weeks only.

	au (d)
KS	540 ± 125
MXB	465 ± 35
EXO	165 ± 60
XTE	95 ± 15
MAXI	240 ± 60
Ter 5	100 ± 10

Constraints

on the crust properties:

- composition,
- nuclear reactions due to accretion,
- neutron superfluidity.

NEUTRON STARS: ASTROPHYSICAL LABORATORIES FOR NUCLEAR PHYSICS

Soft X-ray Transients

NSs in close binaries with a low-mass companion undergoing:

- repeated short periods of accretion;
- Iong quiescent phases.

Observations

Luminosity in quiescent state

Assuming a quasi-stationary evolution:

Luminosity of photons emitted at the surface L_{γ}

- = power from the heat generated in the interior by nuclear reactions $(\langle \dot{M} \rangle)$
- luminosity of neutrinos emitted from the whole interior L_{ν} .

Uncertainties

- observations for at most several decades:
 - $\langle \dot{M} \rangle$ estimated but large uncertainties;
- uncertainty on the distance.

Soft X-ray Transients

NSs in close binaries with a low-mass companion undergoing:

- repeated short periods of accretion;
- Iong quiescent phases.

Modelling

Luminosity in quiescent state

Assuming a quasi-stationary evolution:

Luminosity of photons emitted at the surface L_{γ}

- = power from the heat generated in the interior by nuclear reactions $(\langle \dot{M} \rangle)$
- luminosity of neutrinos emitted from the whole interior L_{ν} .

Ingredients

Properties of the core:

- EoS,
- baryon superfluidity.

Soft X-ray Transients

NSs in close binaries with a low-mass companion undergoing:

- repeated short periods of accretion;
- Iong quiescent phases.

Modelling

Luminosity in quiescent state

Assuming a quasi-stationary evolution:

Luminosity of photons emitted at the surface L_{γ}

- = power from the heat generated in the interior by nuclear reactions $(\langle \dot{M} \rangle)$
- luminosity of neutrinos emitted from the whole interior L_{ν} .

Constraints

Low quiescent luminosity:

- \rightarrow very high ν losses ie. large L_{ν} ;
- the most efficient process: dURCA is necessary:
 - $B_1 \rightarrow B_2 + I + \bar{\nu}_I$

Conservation of momentum \rightarrow density threshold.

Not all EoS allow for the dURCA.

Conclusion

NSs are at the interface between astrophysics and nuclear physics

- Goal: constrain the properties of the nuclear force with astrophysical observations and vice-versa.
- Currently: only constraints from mass measurements;
- Hopefully more to come in the next few years thanks to new X-ray telescopes.
- constraints on the EoS from modeling of the thermal evolution of NSs?
 - isolated NSs: too many uncertainties except if the cooling of a single source is monitored,
 - thermal relaxation of QPXRTs: constraints on the properties of the crust,
 - quiescent states of SXTs: constraints on the core properties.

QCD phase-diagram

