Probing the Standard Model at the LHC

Michele Gallinaro *LIP Lisbon* July 18, 2017

Hadron interactions
 Minimum bias events
 Jet production
 W and Z bosons, top quark

The Standard Model

Excellent agreement with all experimental results

Proton collisions at the LHC

Collisions: 7-8 TeV (2011-12), 13TeV (2015-17)

...under difficult conditions

Trigger

Trigger system decide if the event is interesting to be recorded

Two-step process:

- Level 1: dedicated hardware processors
- High level: computer farm

High radiation levels

LHC Page 1: stable beams

Experiments control rooms

Cessy: Master Control Room

Fermilab: Remote Operations Center

Meyrin: CMS Data Quality Monitoring Center

Any Internet access

2009: first collisions at LHC

Event reconstruction

• Reconstruct event and all constituents: CMS Experiment at LHC, CERN Data recorded: Sun May 6 18:22:39 2012 CEST Run/Event: 193541 / 314062344 – leptons (e, μ , τ), photons Lumi section: 492 - tracks ak5PFJet ET = 69.4 GeV – jets (b-jets) eta = 0.234phi = 1.292 - missing transverse energy – etc. Electron pT = 114.3 GeV eta = 0.515 CMS Experiment at the LHC, CERN phi = -2.530 Data recorded: 2015-Aug-22 02:13:48.861952 GMT Run / Event / LS: 254833 / 1268846022 / 846 ak5PFJet ET = 39.8 GeV eta = 2.134 phi = -2.244

M. Gallinaro - "Probing the SM at the LHC" - Summer@LIP - July 18, 2017

Muon pT = 85.8 GeV eta = 1.269

PFMet pT = 71.30 GeV phi =-0.451

phi = 0.906

Particle Flow event reconstruction

- Particle Flow (PF) combines information from all subdetectors to reconstruct particles produced in the collision
 - charged hadrons, neutral hadrons, photons, muons, electrons
 - use complementary info. from separate detectors to improve performance
 - tracks to improve calorimeter measurements
- From list of particles, can construct higher-level objects

-Jets, b-jets, taus, isolated leptons and photons, MET, etc.

Rediscovery of resonances

Re-discovery of the SM at LHC

Hadron interactions: pp scattering

Proton-proton scattering at LHC

- Hard interaction: qq, gg, qg fusion
- Initial and final state radiation (ISR,FSR)
- Secondary interaction ["underlying event"]

Monte Carlo simulation

Simulation

- Numerical process generation based on random numbers
- Very powerful in particle physics
- Event generation
 - Pythia, Herwig, Isajet, Sherpa ...
 - Hard partonic subprocess + fragmentation, hadronization, decay
- Detector simulation
 - GEANT ...
 - Interaction, response of all particles produced ...

simulate physics process (quantum mechanics: probabilities!)

Detector Simulation simulate interaction with detector material

Digitization translate interactions with detector into realistic signals

Reconstruction/Analysis as for real data

Cross section measurement

Minimum Bias

M. Gallinaro - "Probing the SM at the LHC" - Summer@LIP - July 18, 2017

Minimum bias events

- Particle density in minimum bias events
- Soft QCD (p_T threshold on tracks: 50 MeV)

Tuning of MC generators needed

Jet production

M. Gallinaro - "Probing the SM at the LHC" - Summer@LIP - July 18, 2017

Jet production at LHC

Jet production at LHC (cont.)

- Processes creating jets are complicated
 - Parton fragmentation, with electromagnetic or hadronic showering in the detector
- Jet reconstruction is difficult
- Jet energy scale and reconstruction is large source of uncertainty

Jet energy calibration

E_T can be measured precisely

Inclusive jet distribution

arXiv:1605.04436

- Produced abundantly at the LHC
- Very good agreement with NLO QCD over nine orders of magnitude
 - P_T extending from 20 to 2000 GeV

Dijet event at 13 TeV

CMS Experiment at the LHC, CERN Data recorded: 2016-May-11 21:40:47.974592 GMT Run / Event / LS: 273158 / 238962455 / 150

> Large mass dijet candidate event M_{ii}=7.7 TeV

Dijet mass

arXiv:1611.03568

Search for numerous BSM resonances:

 string resonance, excited quarks, axigluons, colorons, E6 diquarks, W' and Z', RS gravitons

W and Z bosons

M. Gallinaro - "Probing the SM at the LHC" - Summer@LIP - July 18, 2017

W and Z bosons

- Leptonic decays (e/μ): very clean, small branching fractions
- Hadronic decays: two-jet final state, large QCD background

- Isolated high-p_T leptons: starting point of many analyses
 - Good rejection of QCD backgrounds
 - "Tracking" vs "calorimeter" isolation
- Excellent calibration signal
 - Electron energy scale, ID/trigger eff., etc.

W and Z bosons (cont.)

M. Gallinaro - "Probing the SM at the LHC" - Summer@LIP - July 18, 2017

W and Z reconstruction

W/Z cross section vs \sqrt{s}

arXiv:1012.2466, CMS-SMP-15-004

Di-muon mass spectrum

CMS-DP-2015-055

Di-lepton events

arXiv:1609.05391

2017: Di-muon candidate event

CMS Experiment at the LHC, CERN Data recorded: 2017-Jun-27 15:39:36.789504 GMT Run / Event / LS: 297599 / 134277310 / 86

Large mass dimuon candidate event $M_{\mu\mu}$ =2.4 TeV

Single and diboson production

 $W/Z/\gamma$

SMP-17-004, SMP-16-018

- LHC as boson-boson collider
- Single (or double) W/Z production
 - Sensitive to NP
- Observation of vector boson scattering
 - Same-sign WW
- Rich program of precision measurements

Diboson production

- Test of EW corrections
- Sensitive to New Physics from triple gauge couplings
- Increased luminosity will further improve sensitivity

B-physics and Rare decays

- Study rare processes to look for NP
- Indirect searches: $B_{s/d} \rightarrow \mu \mu$
- Flavour changing neutral current (FCNC) forbidden at tree level in SM
- Can only go through loop diagrams

- Lepton Flavor Violation (LFV)
- Search for tau → 3 muon decays
- Very rare process: BR~10⁻⁴⁰!
- Study in Ds and W decays

Top quark production

M. Gallinaro - "Probing the SM at the LHC" - Summer@LIP - July 18, 2017

The top quark

Top quark decays

Top quark and tau lepton

PRD 85 (2012) 112007, PLB 739 (2014) 23

- cross section measurement including taus
- Includes only 3rd generation quarks/leptons

Channel	Signature	BR	
Dilepton(e/µ)	ee,μμ,eμ + 2 <i>b</i> -jets	4/81	
Single lepton	e,μ + jets + 2 <i>b</i> -jets	24/81	
All-hadronic	jets + 2 <i>b</i> -jets	36/81	
Tau dilepton	<i>e</i> τ, μτ +2 <i>b</i> -jets	4/81	→ BR~5%
Tau+jets	τ + jets + 2 <i>b</i> -jets	12/81	

- Charged Higgs may alter coupling to W
 - Search for final states with taus

Top quarks and BSM

- Monitoring of production mechanism
- Interpretation of m_{top}: top, W, Higgs masses
- Are properties consistent with our understanding of EWSB?
- Is there any sign of NP in top production/decay?

Cross sections vs \sqrt{s}

arXiv:1112.5675

M. Gallinaro - "Probing the SM at the LHC" - Summer@LIP - July 18, 2017

May 2017

L_{int}=0.7 fb'

L_{int}=0.7 fb⁻¹

L...=1.0 fb⁻¹

L_{int}=0.7-1.0 fb

L...=0.8-1.1 fb

Lint=1.1 fb

L_{int}=1.1 fb⁻¹

L.,=1.1 fb⁻¹

L...=0.8-1.1 fb

L_{int}=0.7-1.1 fb

L.,=4.7 fb⁻¹

L.,=4.6 fb

L...=4.6 fb

L_{int}=1.7 fb⁻

L.=4.7 fb⁻¹

L_m=4.6 fb

L_{int}=5.0 fb⁻

Lint=2.2 fb⁻

L_{int}=3.9 fb⁻

L_{int}=3.5 fb⁻¹

350

How does a top quark decay?

- almost always t→Wb (i.e. V_{tb}~1)
- lifetime is short, and it decays before hadronizing
- the W is real:
 - − decays W→I_V (I=e,µ, τ), BR~1/9 per lepton
 - can decay W→qq, BR~2/3

Top quark mass

- Top is the only fermion with the mass of the order of EWSB scale
- Discovered Higgs boson fits well with precise determinations of m_W and m_{top}
- Precise measurements of m_t and m_W sensitive to presence of new particles in loop

Top quark mass

- First W mass measurement at the LHC
- Use low pileup data at 7 TeV
- Control of systematic uncertainties
- Uncertainties comparable to Tevatron results
- Expect future improvements

ttV (V=γ,Z,W)

CMS-TOP-17-005, ATLAS-2017-052

- Measurements will give access to EW couplings of the top
- Top+vector boson production
- tt+Z: measure ttZ coupling
- tt+W/Z: sensitive to BSM
 ⇒in agreement with SM

- tZq sensitive to WWZ triple gauge coupling and tZ coupling
- Multivariate technique used

SM measurements

...each one of these measurements (or searches) is a thesis topic!

Not only SM: we need ideas!

• What is that accounts for 96% of the Universe? It is one of the greatest mysteries of Science

M. Gallinaro - "Probing the SM at the LHC" - Summer@LIP - July 18, 2017

SM

Summary

- LHC at the energy/intensity frontier
- Probing the SM with a full spectrum of measurements
- Many studies performed with data collected so far
- Excellent consistency but SM is incomplete
- A surprise can appear at any time

