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MC Event Generator

Problem 1

Problem 2

Factorization into simpler (and
reasonably accurate) components

Final Output

Same format as the real data
recorded by the detector

G

—

Output

Same average behaviour and
fluctuations as real data

‘events’

Detector performance (propagation,
magnetic field, shower calorimeter,

..)

Detector Simulation GEANT
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High Energy

v

Focus on a specific problem:

high energy pp collision. What
goes 1nto this process?

» Incoming beams (protons)

» Hard Process (high
energy interaction
between two partons,
one of each proton)

» Final (Initial) shower
evolution of the
interaction products

Collision
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» Hard scattering
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High Energy Coll

» How to describe such a process
through an event generator?
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High Energy Collisio

» How to describe such a process
through an event generator?
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Hard Process

» Simple high energy process, like 2—1, 2—2, 2—3, ... that can be calculated |
analytically from first principles:

P1 P3

P1 e e P3

P2 P4

» What gives the main characteristics of the event

» SM: Hard QCD, Soft QCD, Heavy-Flavour, DIS, W/Z, Higgs
Production...

» BSM: Technicolor, Compositeness, SUSY, ...

» Given the topology and kinematics, one can evaluate the cross-section, G.
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Parton Distributions

» Initial topology and kinematics 1s not fixed, but rather sampled from the
parton distribution of the two incoming protons...

» Cross-section for a process ij — k: 04 = / dz, / dzy f; (x1) f7 (22) Gij—i

N
/ Elementary cross-section

Parton Distribution Functions (PDFs) (hard process)

Probability to find
a parton ‘1’ inside
beam particle '1'

carrying a fraction

x1 of the total
momentum

(dependent on the
hard process scale,

Q) :
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Parton Distributions
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Derivation from first principles does not yet exist. But its evolution, in Q?,
can be described analytically.

» Rely on
parameterisations:

» conjunction of
experimental
data and
evolution
equations

» Once established,
(proton, Pb, Au, ...)
they are universal.
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Parton Distributions
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Derivation from first principles does not yet exist. But its evolution, in Q?,
can be described analytically.

» Rely on
. MSTW 2008 NLO PDFs (68% C.L.)
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Initial- and Final-State Sh

» Corrections to generate multi-particle production, 2—3, 2—4, etc...
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to generate multi-particle production, 2—3, 2—4, etc...

Corrections
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to generate multi-particle production, 2—3, 2—4, etc...
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» Corrections to generate multi-particle production, 2—3, 2—4, etc...

hard scattering

Qhard

Oij—k = /dl’1/dl’2 f¢1($1) fj2($2)<3z'j—>k
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» Corrections to generate multi-particle production, 2—3, 2—4, etc...

hard scattering
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Initial- and Final-State Showers -

» Corrections to generate multi-particle production, 2—3, 2—4, etc...
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Initial- and Final-State Showers -
» Two approaches to calculate additional radiation to the hard scattering:
» Matrix elements (few particle corrections but higher order)

» Parton shower (more particle corrections but LO and NLO only)

» Evolution equation based on splitting probabilities (SF)

oDz, Q%) al(Q?) ['d
a(cg;z ) O‘;W)/ ZZPM Dh(z Qz)

dz

a(—b Dh 'CU Qz)
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Initial- and Final-State Showers -
» Two approaches to calculate additional radiation to the hard scattering:
» Matrix elements (few particle corrections but higher order)

» Parton shower (more particle corrections but LO and NLO only)

» Evolution equation based on splitting probabilities (SF)

Qﬁ%&@ - / dZZPbH =)0} (£.¢?)

dz

Poc-(2) D (2, Q7).
b
—

Splitting Function (SF)

Probability of parton ‘b’ splits into
parton ‘a’ with a fraction of energy z
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Monte Carlo Techniques

» Quantum mechanics = amplitudes (concept of randomness)
» Event generators = Monte Carlo techniques

» Selection from a probability distribution function

Sudakov Form factor:
» Veto algorithm tr g4/
A(to,t1) = exp{ / /dz—P }

t1
Just like a N(t) zexp{— /t dtf(t)dt

radioactive decay! _
to t Y = N(t) = Noe ™M

Al

J

Given a random number, R, what 1s t;?

Probability of not decay between ty and t, At ty, 1t decays.
15



Initial- and Final-State Showers -
» Results into spray of partons/particles that will form jets;

» Resulting pattern will contribute to the event structure (2, 3,... jet event)

EXPERIMENT

Run: 313100
Event: 196478531
2016-11-18 23:23:28 CEST

tt event candidate

p+Pb \/Syn = 8.16 TeV, 3" EF® = 33 GeV

electron: pr = 125 GeV 1 = 0.23 ¢ = 1.41 charge +
muon: pr =37.6 GeV 5y =-1.71 ¢ = 1.29 charge -1
b-jet 1: pr =99.4 GeV 1 =-1.65 ¢ = -0.51

b-jet 2: pr =66.8 GeV 1 =0.18 ¢ = 0.33

jet1: pr =98.6 GeV 1 =-0.60 ¢ = -2.80

jet2: pr=61.3GeV 7y =-291¢=-2.52
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MPI and Beam Remnanffét

» The 1nitiator shower of the hard scattering takes only a fraction of the total
beam energy. What is left behind 1s called the (coloured) beam remnant
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MPI and Beam Remnanféz

» The 1nitiator shower of the hard scattering takes only a fraction of the total
beam energy. What is left behind 1s called the (coloured) beam remnant

>

¢ Beam Underlying
e R B ~
— Al T Remnants event (bkg)

Initiator <

Showers <« _ s 2s2 T (Color connected
7 to the hard process)

» Dominant 2—2 QCD cross-sections are divergent for pr—0 but drop rapidly
for large pr.

» Probability of multiple parton
interactions 1s not negligible for
ep, pp or AA collisions
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Hadronization

» Mechanism that confines back quarks and gluons into hadrons;

» QCD perturbation theory, formulated in terms of quarks and gluons, 1s valid
at short distances only

» At long distances, in the confinement regime, coloured pardons are
transformed into hadrons, a process called hadronization (or fragmentation)

» Fragmentation process not understood from first principles (rely on
phenomenological models)

» All of them rely on the color flow between the constituents

18



Hadronization

» Mechanism that confines back quarks and gluons into hadrons;

e hard scattering

8= e partonic decays, e.g.
t — bW

e parton shower
evolution

e colo glets
e colourless clusters

e cluster fission

18



Summary

Result of an Event
Generator:

v

» ‘Real’ event as if could
be observed by a
perfect detector.

» Output can be used
now to interface to the
detector simulation




More MC Event Generators

» Typical hadronic event generator (PYTHIA) contains the subprocesses
mentioned so far:

Problem 1

Problem 2
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More MC Event Generators

» Typical hadronic event generator (PYTHIA) contains the subprocesses

mentioned so far:
Hard Scattering

IS Shower FS Shower

PDFs FFs
» Other type of event generators include:

Beam Remnants/MPI Hadro
» Cosmic Rays (for Extensive Air Showers)

» Heavy-1ons (4 Nuclear initial-state, High multiplicity, soft processes, in-
medium energy loss, Collective behavior of the medium)

» Multi-purpose parton event generators (BSM physics)
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