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The	problem…

R.	Conceição 2

The	number	of	hadron	showers	overwhelms	the	gamma	showers
by	several	orders	of	magnitude



Possible	solutions…
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• If	a	gamma	source	emits	continuously	then	
increase	the	acquisition	time

• Increase	angular	resolution

• Increase	the	energy	reconstruction	resolution

• Take	advantage	of	shower	characteristics	to	
distinguish	between	a	gamma/hadron	induced	
shower
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Shower	characteristics
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A	pure	electromagnetic	shower	(gamma)	has	distinct	features	
from	a	shower	with	an	hadronic	component	(hadron)

1.1 The Physics of Air Showers

Fig. 1.3: Comparison of the shower development for a leptonic and a hadronic shower
(taken from [3]). While the electromagnetic shower (left side) shows only a
small lateral spread compared to its longitudinal extension, the hadronic shower
(right side) is quite a lot more extended and also more irregular in shape.

1.1.3 Cherenkov Emission

Cherenkov photons are emitted whenever a charged particle moves through a medium with
a velocity v greater than the local speed of light c

0 = c/n (where n denotes the refractive
index of the medium). The charged particle polarizes the atoms along its path which
emit photons when returning to their equilibrium state. For velocities smaller than the
speed of light the electromagnetic radiation interferes destructively, while for v > c

0 the
interference is additive (See Figure 1.4). This e↵ect is equivalent to the shock front of a
supersonic boom. All photons are emmited in a cone with an opening angle of:
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• Hit	pattern	at	
ground

• Calorimetric
information	at	
ground
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• Hit	pattern	at	ground
– Hits	from	hadronic	
showers	are	more	
sparse	than	in	
gamma	induced	
showers

– RPC	detectors
– Explored	by	the	
ARGO	collaboration

– Not	explored	yet	for	
LATTTES
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• Calorimetric	
information	at	
ground
– Search	for	energetic	
clusters	far	from	the	
shower	core

– Lateral	Distribution	
Function	(LDF)	
steepness

– Water	Cherenkov	
Detectors

– Explored	by	the	
HAWC	collaboration



ARGO	vs LATTES
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• Argo	has	a	higher	granularity	(too	much?)
• Similar	concept	so	ARGO	g/h	discrimination	
analysis	should	be	importable	to	LATTES

ARGO LATTES



HAWC	vs LATTES
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• Take	advantage	of	hybrid	detector:
– RPCs:	timing
– WCD:	calorimetry

HAWC LATTES



Energetic	clusters	far	away	from	
the	shower	core
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Shower	calorimetric	information
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• High	pT sub-shower	carry	large	amounts	of	
• Look	for	energetic	clusters	far	from	the	shower	core	(	>	40	m	)

– Muons	and	high-energy	photons/electrons
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Looking	for	high pt sub-showers
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• HAWC	g/h	discrimination
– Look	for	high	signal	far	away	from	
the	shower	core	(>	40	m)

– Take	advantage	of	height	of	the	
tank	to	distinguish	muons	from	
electrons gamma/hadron'iden:fica:on'

13'

gamma' hadron'

NKG'
(NishimuraG
KamataG
Greisen)'fits'
to'lateral'
distribu:on'
func:on'of'
an'EM'
shower.'

Ruben'Alfaro'

hadrongamma
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• LATTES	g/h	
discrimination
– Use	only	stations	with	a	
distance	above	40	m

– S40:	sum	all	WCD	stations	
signal

– S40_high:	sum	all	WCD	
stations	that	have	a	signal	
above	the	muon	energy	
threshold

– Compute	S40_high	/	S40
– Not	optimized… E [GeV]
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Lateral	distribution	function
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High-energy	discrimination	strategy	

R.	Conceição 16

• Lateral	distribution	function	(LDF)
– LDF	of	gamma	showers	is	more	steep	than	the	LDF	
of	hadron	showers



High-energy	discrimination	strategy	
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• Get	the	photon	average	LDF	for	each	
reconstructed	energy	bin

• Fit	the	average	LDF	to	each	single	event
– Absorb	the	normalization	factor

• Compute	the	shower	compactness
– Event	LDF	“distance”	to	the	photon	average	LDF

Compactness = log10
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High-energy	discrimination	strategy	
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Shower	compactness	discrimination	variable	allows	for	a	
good	background	rejection	which	increases	with	energy
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Combine	information
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• Fisher	discriminant	analysis	
to	combine	the	two	variables
– S40high/S40
– Compactness
– S/√B	=	6	(at	2	TeV)

• LATTES	MVA	toolkit	created
– ROOT::TMVA
– TinyXML
– Python	/	C++

• Can	easily	be	extended	to:
– add	more	discrimination	

variable
– use	higher-order	methods	

BDT,	ANN…
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LATTES	g/h	discrimination
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Although	not	optimized	gamma/discrimination	
results	are	already	very	encouraging



Summary

21

• LATTES	WCDs	can	be	used	to	distinguish	
between	gamma/hadron	showers
– First	results	are	very	encouraging
• Analysis	not	optimized
• More	variables	(ideas)	can	be	easily	added	and	tested

• LATTES	RPCs	still	to	be	explored	in	g/h	
discrimination

R.	Conceição

– Study	the	shower	pattern	at	ground
• The	combination	of	both	techniques	
should	improve	further	LATTES	g/h	
discrimination	
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Contributions	to	the	geometric	reconstruction
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• Photons retain	a	higher	correlation	with	the	
shower	geometry	than	charged	particles

• Could	we	measure	photons	with	the	RPC	instead?
R.	Conceição
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Water Calorimeter

electron

LATTES
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LATTES station baseline concept

muon

Pb

photon



Exploring	the	WCD
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• What	should	we	look	for?
– Look	for	energetic	clusters	far	from	the	shower	core
– Above	40	m	
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events in the bottom plot of Fig. 8. One year of e↵ective time
corresponds to 7.9⇥106 seconds, assuming a duty cycle of 25%
(which corresponds to the average fraction of time at which a
source culminating at zenith is seen within an angle of 30� from
zenith).

The significance of a detection in terms of number of stan-
dard deviations n� can be calculated with a simplified for-
mula n� ' Nexcess/

p
Nbkg, where Nexcess is the number of ex-

cess events, and Nbkg is the background estimate, whenever
Nexcess ⌧ Nbkg. The significance of the Crab signal for one
year is also shown in the bottom plot of Fig. 8.
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Figure 8: Top: Signal from Crab (solid line) and background from charged
cosmic rays (dashed line) per second after the cuts in the 1� angular region,
before the background rejection. Bottom: Signal from Crab (solid line) and
background (dashed line) in one year of e↵ective time after all cuts. The Crab
significance, expressed as the ratio between the signal and the square root of
the background, is also shown.

5.7. Sensitivity for a steady source

To evaluate the performance of the detector, we compute its
di↵erential sensitivity, i.e. we investigate the sensitivity in nar-
row bins of energy (4 bins per decade). We compute the sensi-
tivity as the flux of a source giving Nexcess/

p
Nbkg = 5 after 1

year of e↵ective observation time for a source visible for 1/4 of
the time (this roughly corresponds to the visibility of the Galac-
tic Centre from the Southern tropic).

The result is shown in Fig. 9, and compared with the one-
year sensitivities of Fermi and HAWC.
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Figure 9: Di↵erential sensitivity. We compute the flux of the source in a given
energy range for which Nexcess/

p
Nbkg = 5, Nexcess > 10, after 1 year of time (a

25% duty cycle has been assumed). 4 bins per decade in estimated energy are
used. For comparison, fractions of the Crab Nebula spectrum are plotted with
the thin dashed gray lines.
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Figure 10: Integral sensitivity, defined as the flux of a source above a given
energy for which Nexcess/

p
Nbkg = 5 after 1 year; it is assumed that the SED

is proportional to the SED of Crab Nebula. For comparison, fractions of the
integral Crab Nebula spectrum are plotted with the thin, dashed, gray lines.

The di↵erential sensitivity is independent of the spectral en-
ergy distribution (SED) of the emitting source. To compute the
total sensitivity one must assume a SED; from this assumption,
one can compute an integral sensitivity.

We compute the integral sensitivity as the flux of a source
with a SED proportional to the SED of Crab Nebula giving
Nexcess/

p
Nbkg = 5 after 1 year, and integrating all energies

above a given energy. The integral sensitivity is shown in
Fig. 10.

5.8. Sensitivity to transient phenomena

To evaluate the capability of the detector to study sources
with a fast luminosity variability in time, as well as to observe
fast transient phenomena, we computed the integral sensitivity
for a time window of one minute. Demanding a 3 sigma level
above background we estimated a sensitivity of 25 Crab units
above 100 GeV.

7

LATTES	expect	events	from	Crab

R.	Conceição 27

events in the bottom plot of Fig. 8. One year of e↵ective time
corresponds to 7.9⇥106 seconds, assuming a duty cycle of 25%
(which corresponds to the average fraction of time at which a
source culminating at zenith is seen within an angle of 30� from
zenith).

The significance of a detection in terms of number of stan-
dard deviations n� can be calculated with a simplified for-
mula n� ' Nexcess/

p
Nbkg, where Nexcess is the number of ex-

cess events, and Nbkg is the background estimate, whenever
Nexcess ⌧ Nbkg. The significance of the Crab signal for one
year is also shown in the bottom plot of Fig. 8.
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Figure 8: Top: Signal from Crab (solid line) and background from charged
cosmic rays (dashed line) per second after the cuts in the 1� angular region,
before the background rejection. Bottom: Signal from Crab (solid line) and
background (dashed line) in one year of e↵ective time after all cuts. The Crab
significance, expressed as the ratio between the signal and the square root of
the background, is also shown.

5.7. Sensitivity for a steady source

To evaluate the performance of the detector, we compute its
di↵erential sensitivity, i.e. we investigate the sensitivity in nar-
row bins of energy (4 bins per decade). We compute the sensi-
tivity as the flux of a source giving Nexcess/

p
Nbkg = 5 after 1

year of e↵ective observation time for a source visible for 1/4 of
the time (this roughly corresponds to the visibility of the Galac-
tic Centre from the Southern tropic).

The result is shown in Fig. 9, and compared with the one-
year sensitivities of Fermi and HAWC.
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Figure 9: Di↵erential sensitivity. We compute the flux of the source in a given
energy range for which Nexcess/

p
Nbkg = 5, Nexcess > 10, after 1 year of time (a

25% duty cycle has been assumed). 4 bins per decade in estimated energy are
used. For comparison, fractions of the Crab Nebula spectrum are plotted with
the thin dashed gray lines.
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Figure 10: Integral sensitivity, defined as the flux of a source above a given
energy for which Nexcess/

p
Nbkg = 5 after 1 year; it is assumed that the SED

is proportional to the SED of Crab Nebula. For comparison, fractions of the
integral Crab Nebula spectrum are plotted with the thin, dashed, gray lines.

The di↵erential sensitivity is independent of the spectral en-
ergy distribution (SED) of the emitting source. To compute the
total sensitivity one must assume a SED; from this assumption,
one can compute an integral sensitivity.

We compute the integral sensitivity as the flux of a source
with a SED proportional to the SED of Crab Nebula giving
Nexcess/

p
Nbkg = 5 after 1 year, and integrating all energies

above a given energy. The integral sensitivity is shown in
Fig. 10.

5.8. Sensitivity to transient phenomena

To evaluate the capability of the detector to study sources
with a fast luminosity variability in time, as well as to observe
fast transient phenomena, we computed the integral sensitivity
for a time window of one minute. Demanding a 3 sigma level
above background we estimated a sensitivity of 25 Crab units
above 100 GeV.
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LATTES station

Pb
RPC

WCD

– Thin	lead	plate	(Pb)
• 5.6	mm	(one radiation lenght)

– Resistive	Plate	Chambers (RPC)
• 2	RPCs	per	station
• Each	RPC	with	4x4	readout	pads

– Water	Cherenkov	Detector (WCD)
• 2	PMTs	(diameter:	15	cm)
• Inner	walls	covered	with	white	diffusing	paint

R.	Conceição
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• Hybrid	detector:
– Thin	lead	plate

• To	convert	the	secondary	photons
• Improve	geometric reconstruction

– Resistive	Plates	Chamber
• Sensitive	to	charged	particles
• Good	time	and	spatial	resolution
• Improve	geometric	reconstruction
• Explore	shower	particle	patterns	at	
ground

– Water	Cherenkov	Detector
• Sensitive	to	secondary	photons	and	
charged	particles

• Measure	energy	flow	at	ground
• Improve	trigger	capability
• Improve	gamma/hadron	
discrimination

LATTES	station
1.5	m	x	3	m	x	0.5	m

LATTES	core	array
30	x	60	stations
100	x	100	m2

R.	Conceição
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Acrylic	box	with	glass	electrodes	and	
1	mm	gas	gaps

Detailed	RPC	structure	

• Realistic	description

• Explore Geant4	capabilities	to	simulate
optical	photon	propagation;	

• λ dependence	of	all	relevant	
processes/materials	taken	into	account;

• Water
– Attenuation	length	~	80	m	@ λ =	400	nm

• PMT
– Q.E.max ~	30%	@	λ =	420	nm

• Tyvek
– Described using	the	G4	UNIFIED	optical	model;	
– Specular and diffusive properties;
– R ~ 95%, forλ > 450 nm

R.	Conceição


