

I'C

Patricia Conde Muíño (LIP, FCUL) pconde@lip.pt

> ATLAS is one of the four LHC experiments at CERN

ATLAS

> ATLAS is one of the four LHC experiments at CERN

P. Conde Muíño

A equipa ATLAS Portuguesa

National group: LIP (Lisbon, Coimbra, Minho) FCUL, FCTUC, U. Minho, CEFITEC/UNL, INESC-ID, BIOISI AdI engineers training program

P. Conde Muíño

Olhando para o inicio do Universo

Identificação das partículas no detector

Futuro do LHC e de ATLAS

P. Conde Muíño

LHC Upgrade Challenges

- Interesting processes have small cross-sections
- Need to process & select interesting events in real time
 - 40 MHz event rate

Very large number of interactions/event 10⁸ electronic channels

Run 2	Run 3	Run 4
13TeV	14 TeV	14 TeV
1.2×10 ³⁴	2×10 ³⁴	5×10 ³⁴
23	55-80	140- 200
40 MHz	40 MHz	40 MHz
1000 Hz	1000 Hz	1000 Hz
25 ns	25 ns	25 ns
	Run 2 13TeV 1.2×10³4 23 40 MHz 1000 Hz 25 ns	Run 2 Run 3 13TeV 14 TeV 1.2×10 ³⁴ 2×10 ³⁴ 23 55-80 40 MHz 40 MHz 1000 Hz 1000 Hz 25 ns 25 ns

P. Conde Muíño

P. Conde Muíño

ATLAS TDAQ Architecture

Using GPUs at trigger level

- > Thousands of cores with limited processing speed/core
- Different programming paradigm:
 Single-instruction-multiple-data
- Great potential to improve events processed/(s×CHF)
- Demonstrator prototype under implementation:

LIP group responsible for the calorimeter reconstruction

Cluster reconstruction

3D particle energy depositions

> TopoCluster reconstruction on CPU (~8% of total time)

Group cells according to their signal/noise ratio

> TAC: Topo-Automaton Clustering

Use a cellular automaton for the GPU (maximize parallelism)

Propagate flag on a grid of elements (cell pair)

Cells get the largest flag on each iteration

Phase I Demonstrator prototype results

- Energy difference <5% for most clusters</p>
- Preliminary time reduction factor obtained

Sample	Pile-up	Reduction factor
tt-bar	138	5
tt-bar	46	5
di-jets	40	1.3

Work developed in collaboration with Minho University and Computing groups at LIP

For Upgrade Phase II

New challenges and other interesting algorithms to parallelize! Jet substructure \rightarrow essential for new physics searches

Phase

Phase I TileCal hadronic calorimeter Upgrade

Phase I

- Gap scintillator/fibres replacement due to radiation damage
- R&D on radiation hard scintillators Irradiations at CTN
 - Tests at the LOMAC lab
- Fibres preparation and quality control

LOMAC: Laboratório de Ótica e Materiais Cintilantes

Optical fibre preparation

Measurement of WLS optical fibres properties

Tile calorimeter readout

P.

Phase II TileCal Upgrade

- > Detector electronics replacement
 - HV distribution boards
 - New boards designed @ LIP/FFCUL/INESC-ID
 - First prototype under implementation
 - To be tested with beams of particles at CERN (2017)
 - 1- Placa TIBBO EM1206-EV
 - 2- Expansor MCP23S17
 - 3- Controlo feito com o painel

More information on our web page

http://www.lip.pt/atlas/

You can always contact us at:

Backup

TileCal Upgrade: scintillators and fibres

Tilecal scintillators and WLS fibers do not need replacement.

Exception: long scintillators in the gap/crack region that suffer significative radiation damage causing light loss

GPU Calorimeter Clustering Performance

- Energy difference <5% for most clusters</p>
 - Cluster growing time reduction factor:

Sample	Pile-up	Reduction factor
tt-bar	138	2
tt-bar	46	2
di-jets	40	1.3

Potential larger gain with parallelization of next clustering steps (splitting)

Some of the Portuguese contributions to ATLAS

Hadronic calorimeter TileCal, Trigger, forward detectors

master

master

Tile

Optical fibers

PMT quality control

P. Conde Muíño

Luminosity detector

Detector control

Performance, calibration, M & O

Physics \succ

Events / 10 GeV

80

40

ATLAS Preliminary

100 120 140 160 180 200

100 √s = 7 TeV, Ldt = 4.7 fb

 $H \rightarrow WW^{(1)} \rightarrow IvIv + 0$ jets

Higgs (WW, bb and ttH)

WZ/ZZ/Wy

Single Top

H [125 GeV]

220 240

W+jets

- Top quark properties
- ≻ Heavy Ion Physics
- **Exotics Physics** Searches

