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Machine Learning



What is machine learning?

® In essence, it is the automation of model building

® By exposing a machine to a large amount of data, it can build up an
understanding of the patterns within the data, and form predictive models

® Several methods exist, but let's examine artificial neural-networks



Artificial neural-
networks

Say we want to predict the class (orange
or blue) of points according to their
position




Artificial neural-networks
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Artificial neural-networks

FEATURES + — 6 HIDDEN LAYERS
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Artificial neural-networks
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Artificial neural-networks

FEATURES + — 6 HIDDEN LAYERS OUTPUT
Which properties do Test loss 0.564
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Artificial neural-networks

Deep learning of
FEATURES + — 6 HIDDEN LAYERS OUTPUT
Which properties do featu res
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Machine learningin particle physics

® We just classified points by their positions

® Imagine if instead the inputs were observables you could measure in a
particle detector like CMS




Machine learningin particle physics

We just classified points by their positions

Imagine if instead the inputs were observables you could measure in a
particle detector like CMS

Now you could classify collisions according to the particle process which
occurred

Neural-networks can also be used for regression; estimating numbers like
particle masses from data



Machine Learningin particle physics

: Many applications



ML in di-Higgs physics - an example

¢ Reconstructing the di-Higgs mass can be imprecise due to missing energy
(neutrinos)

® By training a machine to understand the relationships between observable
features and the true values of variables, the precision can be improved




Di-Higgs mass: reconstruction estimate
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Di-Higgs mass: reconstruction estimate
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Di-Higgs mass: reconstruction estimate
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Di-Higgs mass: reconstruction estimate

anz0

Reconsiructed Signal, AM= —13.99+0.09, 0 =87. 7+ 0.2
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econstructed Signal, AM= —13.99+0.09, s =87. 7+ 0.2
egressed Signal, AM= —2.57+0.02,0=31.59£0.04

We're getting there!
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Opportunitiesfor you at LIP

® Master's theses
® Summer internships

® Lecture series




Conclusion

Several opportunities for you to get involved!
ML is increasingly becoming the standard approach in particle physics
It is also heavily used inindustry and other areas of research

Under heavy research itself



Further reading — Searches terms

® Browser-based ML playgrounds:
® Tensorflow playground
® Gradient boosting playground

® Introductory course on ML: mlhep2016 github

® Network focussing on ML in physics: amvasnp



Furtherreading - Links

Browser-based ML playgrounds:
® http://playground.tensorflow.org/

® https://arogozhnikov.github.io/2016/07/05/gradient boosting playground.html

Introductory course on ML: https://github.com/yandexdataschool/mlhep2016

Parameterised classifiers: https://arxiv.org/abs/1601.07913 https://arxiv.org/abs/1506.02169

Example investigation: https://cds.cern.ch/record/2204934/files/HIG-16-028-pas.pdf

Network focussingon ML in physics: https://amvasnewphysics.wordpress.com/




