Strange Quark Polarisation Puzzle-Unfinished Quest

Marcin Stolarski

LIP

outline:

- (long) introduction
- strange quark polarisation puzzle
- analysis of HERMES data
- COMPASS data and comparison with HERMES

Stern-Gerlarch Experiment (1922)

- observed: spread of the beam on 2 levels!
- classical: continuous spread of the beam
- quantum: split on 1,3,5...2L+1 levels; BTW no split expected (L=0)
- Uhlenbeck, Goudsmit (1925) introduced spin concept, as a quantum degree of freedom of particles

Quark Parton Model

- quark parton model describes:
 - masses
 - charges
 - anomalous magnetic moments $(\vec{\mu} = \frac{e_i}{2m_i} s \vec{pin})$

	mag.mom. QPM	mag.mom. mes.
р	+2.79	+2.793
n	-1.86	-1.913
Λ	-0.61	-0.614

- spin ???
- in QPM: $S_p = 1/2\Delta\Sigma \rightarrow$ quarks build proton spin!

The Idea of Experiment

• interaction of polarised muons (electrons) with nucleon

- because of angular momentum conservation only quarks with a spin opposite to the spin of the photon can interact with it
- spin effects are small, precise method of extraction is needed like, asymmetry measurements

From the Idea to the Experiment

We need:

- polarised photon source \rightarrow beam
- polarised nucleons \rightarrow polarised target
- info about interactions \rightarrow spectrometer
- details shown on an example of the COMPASS experiment

COMPASS @ CERN

The Beam

- SPS in cycles accelerates protons to energy 450 GeV
- protons are extracted on to a beryllium target \rightarrow secondary particles are produced e.g. π, K
- π and K are not stable \rightarrow decay on e.g. μ
- a hadron absorber stops most of the hadrons, while μ pass it
- sets of magnets focus and select μ beam of a given momentum
- the μ beam intensity: $4 \cdot 10^7/s$
- conversion efficiency: $1 \ \mu$ for 10^5 protons
- muons are good sources of virtual photons...

Polarisation of the Beam

- consider decay of $\pi \to \mu \nu$
- due to CP violation \rightarrow full neutrino polarisation
- conservation of angular momentum \rightarrow decay muon is also polarised.
- muon momentum and its polarisation
 - $-\,$ parent π momentum 172 GeV
 - $\approx 172 \text{ GeV}: P_{\mu} = -1.0$
 - $160 \text{ GeV}: P_{\mu} = -0.8$
 - $130 \text{ GeV}: P_{\mu} = 0.0$
 - $-98 \text{ GeV}: P_{\mu} = 1.0$

The Target Polarisation

- atom in the strong magnetic field and low temperature...
- the energy levels are separated depending upon relative orientation of a particle spin and magnetic field direction \rightarrow spontaneous polarisation of particles
- example of polarisation for T=50mk and B=2.5T
 - electron 99.8%
 - proton 1%
 - deuteron 0.5%
- one cannot polarise nucleons using this method...
- $\mu_p \ll \mu_e$, thus low magnetic moment of proton
- instead a method of dynamic nuclear polarisation is used...

The Target Polarisation cont.

- idea of DNP: simultaneous flip of electron and proton spin
- sill strong magnetic field and low temperature is needed!
- energy supplied by micro-waves ($\omega_e \approx 70 GHz, \omega_p \approx 105 MHz$)
- electron relaxes in $\approx 1 \mu s$ to the ground state
- protons due to their large mass and so low magnetic moment do not change their orientation

- COLLABORATION
 - about 210 physicists
 - 27 institutes
- DETECTOR
 - 60 m length
 - -2 (3) magnets
 - $-\,$ about 350 detector planes

- POLARISED TARGET
 - ⁶LiD (*NH*₃) target
 - 2-3 cells (120 cm total length)
 - $-\pm 50\%$ (90%) polarization
 - $-\,$ polarisation reversal every 8h-24h $\,$
- POLARISED BEAM
 - $\begin{array}{cccc} \mbox{ positive muons at } 160/(200) \\ \mbox{ GeV/c (2011)} \end{array}$
 - $-\,$ polarisation –80 %
- FEATURES
 - acceptance: 70 (180) mrad (2006)
 - track reconstruction: p > 0.5GeV/c
 - identification h, e, μ : ECAL, HCAL and muon filters
 - identification: π , K, p (RICH) above 2, 9, 18 GeV/c respectively

Studied Processes

- Deep Inelastic Scattering- (DIS)
- incoming and outgoing muon fourmomenta are measured
- the target mass is known
- the final state X is not looked at
- the cleanest measurement

- Semi-Inclusive Deep Inelastic Scattering (SIDIS)
- the difference w.r.t. DIS: the final state is look at
- additional complication arise: what is probability that a quark of type q fragments into a hadron type h?
- a new non perturbative object needed -Fragmentation Functions (FF)

Kinematic Variables

Q^2 :

- four-momentum transfer from lepton to nucleon
- $Q^2 = -m_{\gamma^*}^2; Q^2 \in (0,\infty) \text{ GeV}^2$
- Q^2 is a photon resolution
- $Q^2 \approx 1 \text{GeV}^2 \rightarrow \delta r \approx 1 \text{ fm}$
- DIS: $Q^2 > 1 \text{ GeV}^2$ the perturbative region

Bjorken x:

in the frame of the infinite proton momentum
x is a fraction of the proton momentum carried
by the quark (parton)

hadron z

- the energy ratio of the hadron to the virtual photon
- variable used in SIDIS

The Measurement and the Physics

$$\frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} = A_{raw}$$

- $A_1 = \frac{A_{raw}}{fDP_bP_T}$
 - $-\,$ f- dilution factor fraction of polarisable material in the target
 - P_b, P_T beam and target polarisations
 - D depolarisation factor (polarisation transfer $\mu \to \gamma^*)$
 - fDP_bP_T of the order of 0.05 0.10 in COMPASS
- $g_1 = A_1 \cdot F_1$
 - $F_1(x)$ is unpolarised structure function $F_1(x) = 1/2 \sum_i e_i^2 q_i(x)$
 - $-g_1(x)$ is the number density of quarks polarised parallel-anti-parallel to the proton spin, $g1(x)=1/2\sum_i\Delta e_i^2q_i(x)$
- $\Gamma_1 = \int_0^1 g_1(x) dx$ the first moment of g_1

Short Story of Spin Measurements

- first asymmetry measurement in SLAC, USA since 1975, made by Vernon Hughes.
- results with large uncertainties were agreeing with expectations
- unexpected results of EMC (1987) starts the so-called "spin crisis": quarks carry only $10\% \pm 15\%$ of the proton spin
 - **Phys. Lett. B206**(1988),364; cited 1659 times
 - Nucl. Phys. B328(1989),1; cited 1422 times
- second generation of experiments to confirm EMC results, at CERN and US (early-mid of 90')
- third generation of experiments trying to solve spin puzzle COMPASS @ CERN, HERMES @ DESY, experiments at US in RHIC and JLab laboratories
- fourth generation is in plans...

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-EP/87-230 December 23rd, 1987

A MEASUREMENT OF THE SPIN ASYMMETRY AND DETERMINATION OF THE STRUCTURE FUNCTION 8, IN DEEP INELASTIC MUON-PROTON SCATTERING

The European Muon Collaboration

Aachen¹, CERN², Freiburg³, Heidelberg⁴, Lancaster⁵, LAPP (Annecy)⁶, Liverpool⁷, Marseille⁴, Mons⁹, Oxford¹⁰, Rutherford¹¹, Sheffield¹², Turin¹³, Uppsala¹⁴, Warsaw¹⁵, Wuppertal¹⁶, Yale¹⁷.

J. Ashman¹², <u>B. Badelek¹⁵⁸⁾</u>, G. Baum^{17b)}, J. Beaufays², C.P. Bee⁷, C. Benchouk*, I.G. Birdsc), S.C. Brown7d), M.C. Caputo17, H.W.K. Cheung10, J. Chimalle), J. Ciborowskilsa), R.W. Clifftll, G. Coignets, F. Combley12, G. Court7, G D'Agostini*, J. Drees16, M. Düren1, N. Dyce3, A.W. Edwards16f) H. Edwards¹¹, T. Ernst³, M.I. Ferrero¹³, D. Francis⁷, E. Gabathuler⁷ J. Gajewski^{15a}), R. Gamet⁷, V. Gibson^{10g}), J. Gillies¹⁰, P. Grafström¹⁴g), K. Hamacher16, D.v. Harrach4, P. Hayman7, J.R. Holt7, V.W. Hughes17, A. Jacholkowska²h), T. Jones⁷i), E.M. Kabuss³C), B. Korzen¹⁶, U. Krüner¹⁶, S. Kullander¹⁴, U. Landgraf³, D. Lanske¹, F. Lettenström¹⁴, T. Lindqvist¹⁴, J. Loken¹⁰, M. Matthews⁷, Y. Mizuno⁴, K. Mönig¹⁶, F. Montanet⁸S), J. Nassalski¹⁵j), T. Wiinikoski², P.R. Norton¹¹, G. Oakham¹¹k), R.F. Oppenheim¹⁷l), A.M. Osborne², V. Papavassiliou¹⁷, N. Pavel¹⁶, C. Peronils, H. Peschells, R. Piegaial7, B. Pietrzyks, U. Pietrzykism) B. Povh4, P. Renton10, J.M. Rieubland2, K. Rithsc), E. Rondio1sa), L. Ropelewski1sa), D. Salmon12i), A. Sandacz15j), T. Schröders, K.P. Schüler17, K. Schultzel, T.-A. Shibata4, T. Sloan5, A. Staiano4n), H. Stier³ J. Stock³, G.N. Taylor¹⁰⁰), J.C. Thompson¹¹, T. Walcher⁴P) S. Wheeler12g), W.S.C. Williams10, S.J. Wimpenny79), R. Windmolders*, W.J. Womersleylor), K. Ziemonsl

(Submitted to Physics Letters)

ABSTRACT

The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured over a large x range (.01 < x < 0.7). The spin dependent structure function $g_1(x)$ for the proton has been determined and its integral over x found to be 0.114 ± 0.012 ± 0.026, in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Bjorken sum rule, this result implies a significant negative value for the integral of g_1 for the neutron. These values for the integrals of g_1 lead to the conclusion that the total quark spin constitutes a rather small fraction of the spin of the nucleon.

For footnotes see next page.

ABSTRACT

The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured over a large x range (.01 < x < 0.7). The spin dependent structure function g (x) for the proton has been determined and its integral over x found to be 0.114 \pm 0.012 \pm 0.026, in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Bjorken sum rule, this result implies a significant negative value for the integral of g for the neutron. These values for the integrals of g lead to the conclusion that the total quark spin constitutes a rather small fraction of the spin of the nucleon.

For footnotes see next page.

Modern Results

Modern Results cont.

- reminder: it was expected that quarks, $\Delta\Sigma$, carry spin of the proton,
- $S_p = 1/2 = 1/2\Delta\Sigma$
- current experiments: $\Delta \Sigma = 0.30 \pm 0.01 \pm 0.02 \ (\bar{MS} \text{ scheme})$
- the spin crisis: what builds up the spin of the proton?

•
$$S_p = 1/2 = 1/2\Delta\Sigma + \Delta G + L_{q,g}$$
, where:

- $-\Delta G$ gluon contribution
- $-L_{q,g}$ angular momentum contribution of quark and gluons
- one of the COMPASS main goal was to measure $\Delta G/G$

$\Delta G/G$

- subject of Celso and Luis PHD theses
- published: **PLB 718** (2013) 922 and **PRD 87** (2013) 052018
- NLO analysis for charm events
- $\Delta G/G$ is small
- the latest results from RHIC shows that it might be indeed positive

• however, the spin crisis is not the main topic of the seminar...

Quark Polarisation, $\Delta \Sigma$...

- $\Delta \Sigma = 0.30 \pm 0.01 \pm 0.02 = \Delta U + \Delta D + \Delta S$
- the question one may ask is what are various quark flavours contribution to the nucleon spin?
- information from:
 - inclusive asymmetries
 - * $\Gamma_1^p \sim 4\Delta U + \Delta D + \Delta S$
 - semi-inclusive asymmetries
 - sum rules
- example of sum rules form SU(3) symmetry:

$$-a_3 = \Delta U - \Delta D \sim g_A/g_V$$
 - from neutron decay

 $-a_8 = \Delta U + \Delta D - 2\Delta S = 0.585 \pm 0.025$ - from hyperon decays

$$-a_0 = \Delta U + \Delta D + \Delta S = \Delta \Sigma = 0.30 \pm 0.02 \pm 0.01$$

- observe that $(a_0 a_8)/3 = \Delta S = -0.09$
- negative polarisation of strange quarks in the nucleon is expected!!!

Test of the Bjorken Sum Rule

- $g_1^{NS}(x,Q^2) = g_1^p(x,Q^2) g_1^n(x,Q^2) = 2(g_1^p(x,Q^2) g_1^d(x,Q^2))$
- $g_1^{NS}(x,Q^2)$ is interesting because its Q^2 dependence decouples from the singlet and gluon densities
- $\int_0^1 g_1^{NS}(x,Q^2) = \Gamma_1^{NS} = \frac{1}{6} \frac{g_A}{g_V} C_1^{NS}(Q^2),$ where $C_1^{NS}(Q^2) \approx 1$ has been calculated in pQCD up to $\alpha_s^3(Q^2)$
- $\frac{g_A}{g_V}$ can be obtained from neutron beta decay: $\frac{g_A}{g_V} = 1.2694 \pm 0.0028$

Semi-Inclusive Asymmetries and Flavour Separation

- semi-inclusive asymmetries were measured on both p and d targets
- COMPASS for the first time measured Kaons asymmetries on p target
- in the LO approximation $A_1^h(x, Q^2, z) = \frac{\sum_q e_q^2 \Delta q(x, Q^2) D_q(z, Q^2)}{\sum_q e_q^2 q(x, Q^2) D_q(z, Q^2)}$
- *D* is a fragmentation Function (FF)
- with 10 asymmetries $(A_{1p,d}^{incl}, A_{1p,d}^{\pi\pm}, A_{1p,d}^{K\pm})$ and 5 unknown parameters $(\Delta u, \Delta d, \Delta \bar{u}, \Delta \bar{d}, \Delta s)$ a flavor separation is possible

LO Flavour Separation - ΔS from HERMES

- **PLB 666** (2008) 446
- curve from LSS group **PRD** 73 034023
- clear disagreement of data with global fit is visible
- $\int_{0.02}^{0.60} \Delta S(x) dx = 0.038 \pm 0.019 \pm 0.027$

LO Flavour Separation - COMPASS

- COMPASS results: **PLB 693** (2010) 227
- curves: DSSV NLO parametrisation **PRL 101** (2008) 072001; **PRD 80** (2009) 034030, fit includes HERMES data
- good agreement between COMPASS data and DSSV parametrisation

"Strange Quark Polarisation Puzzle"

- $\int_0^1 \Delta s(x) + \Delta \bar{s}(x) dx = \Delta S$ is negative from inclusive asymmetries $\Delta S = -0.09 \pm 0.01 \pm 0.02$
- surprisingly, SIDIS analysis do not confirm this observation.
- HERMES: $\int_{0.02}^{0.6} \Delta S(x) = +0.038 \pm 0.019 \pm 0.027$
- to accommodate the above discrepancy, in the DSS fit the s(x) changes sign. So that it is positive for high x and negative for low x
- however, LSS groups claim that the value of $\Delta s(x) + \Delta \bar{s}(x)$ from the inclusive analysis is negative in the whole x range!
 - this is even true when π asymmetries are included in the fit
 - only Kaon asymmetries poses a problem!
 - LSS group has changed **FF** set from DSS to HKNS
 - with HKNS FF set ΔS from kaons asymmetries is also negative

Fragmentation Functions

- non-perturbative object must be measured in the experiment
- in LO describe probability density that a quark of type q fragments into a hadron type h D^h_q
- D_q^h depends only upon z and weakly (DGLAP type) upon Q^2
- universal object can be used/measured in e^+e^- , ep or pp reactions
- they are not well know in the kaon sector
- there is only one truly wold data parametrisation of FF DSS
- however, it doesn't agree with recent SIDIS measurements....

Fragmentation Functions and ΔS

- the importance of FF for ΔS is not a new idea (COMPASS!)
- in the strange sector we have access to 3 FF
 - $D_{str}: \bar{s} \to K^+$ and c.c.
 - $D_{fav}: u \to K^+$ and c.c.
 - $D_{unf}: \bar{u}, d, \bar{d} \to K^+ \text{ and c.c.}$
- the key variable from point of view of ΔS is the ratio $\int D_{str}(z) dz / \int D_{fav}(dz)$

Measurement of Fragmentation Functions

- FF can be studied in many processes in e^+e^- , ep or pp
- different processes are sensitive to different FFs
 - $-e^+e^-$ singlet distribution (cannot tell if K^+ comes from q or \bar{q})
 - -pp high p_T events sensitive to gluons
 - ep sensitive to flavour separated FF
- the easiest way access FFs is via measurements hadron multiplicities
 - in SIDIS hadron multiplicity: $\frac{\text{number of produced hadrons}}{\text{number of DIS events}}$
 - various kinematic factors cancels in the above ratio

$$- M^{p,K^{+}}(x,Q^{2},z) = \frac{4uD_{fav} + (4\bar{u}+d+d)D_{unf} + (s+\bar{s})D_{str}}{4u+4\bar{u}+d+\bar{d}+s+\bar{s}}$$

- $D_i(Q^2, z)$ and $q(x, Q^2) = u, \overline{u}...$
- In SIDIS multiplicities studies for different x, *i.e.* various relative contribution of q_i

Kaon Multiplicity Sum and S(x)

- notation and assumptions:
 - deuteron target!!!

$$- Q(x) = u(x) + \bar{u}(x) + d(x) + \bar{d}(x),$$

$$- S(x) = s(x) + \bar{s}(x)$$

$$- D_Q^K = 4D_{fav} + 6D_{unf}$$

$$- D_S^K = 2D_{str}$$

- kk - some kinematic factor

•
$$\frac{d^2 N^K(x)}{dx dQ^2} = kk(x, Q^2) \left[Q(x) \int D_Q^K(z) dz + S(x) \int D_S^K(z) dz \right]$$

•
$$\frac{d^2 N^{DIS}(x)}{dx dQ^2} = kk(x, Q^2)[5Q(x) + 2S(x)]$$

• dividing the two equations by each other, and neglecting 2S(x) one gets:

•
$$5 \frac{dN^{K}(x)}{dN^{DIS}(x)} = \int D_{Q}^{K}(z)dz + S(x)/Q(x) \int D_{S}^{K}(z)$$

- $\frac{dN^{K}(x)}{dN^{DIS}(x)}$ - sum of kaon multiplicities

Kaon Multiplicity Sum and S(x) cont.

- $5\frac{dN^{K}(x)}{dN^{DIS}(x)} = \int D_{Q}^{K}(z)dz + S(x)/Q(x)\int D_{S}^{K}(z)$
- at high x one can neglect $S(x)/Q(x) \int D_S^K(z) dz!$
- at high $x: 5\frac{dN^{K}(x)}{dN^{DIS}(x)} = \int D_{Q}^{K}(z)dz$
- FFs are x independent! one can extract $\int D_S(z)dz$ using data at low x and knowledge of $\int D_Q^K(z)dz$ at high x
- one expects flat $\frac{dN^{K}(x)}{dN^{DIS}(x)}$ at low x and an increase of it for lower x due to strange quarks contribution
- HERMES results from **PLB 666** (2008) 446

HERMES Results

- after the extraction of $S(x) \int D_S^K(z) dz$ HERMES tried to evaluate D_S^K
 - extraction failed large $\chi^2/nd\!f$
 - decided that the culprit is S(x)
- finally HERMES extracted S(x) assuming $\int D_S^K(z) dz$ from DSS
- the obtained results were rather surprising:
 - the value of S(x) at low x was found to be similar to $\bar{u} + \bar{d}$, contrary to most of PDF sets
 - the shape of extracted S(x) was very different from $\bar{u}+\bar{d}$
- BTW. ATLAS and CMS data also prefers non-suppressed strange sea (large errors)

My Point of View...

- IMHO the HERMES analysis was oversimplified
- when unexpected behaviour is observed on the sum of K multiplicities one should verify that *e.g.* the multiplicity difference is well under control
- unfortunately charged separated multiplicities were not published at the time...
- In the seminar I will show my analysis of preliminary HERMES data shown (DIS2011)
- work summarised in hep-ex 1208.5427
- HERMES data finally published two weeks ago, **PRD 87** (2013) 074029, no big difference w.r.t. preliminary data presented here...

The Kaon Multiplicity Difference: $K^+ - K^-$

- reasons why the kaon multiplicity difference is important:
 - the contribution from strange quarks CANCELS in the difference
 - the gluon contribution cancels too \rightarrow easier evolution in NLO
 - many experimental systematic errors cancel in the multiplicity difference
 - one have easy access to certain combination of FF, namely $D_{fav} D_{unf}$
 - $\frac{dN_{diff}^{K}}{dN^{DIS}} = \frac{4(u_v + d_v)}{5Q + 2S} (D_{fav} D_{unf}) \text{deuteron target!}$

The Multiplicity Difference vs Multiplicity Sum

- to claim that the features observed by HERMES in the multiplicity sum are related to S(x), one has to show that the multiplicity difference is well under control
- observe that in the multiplicity difference there is no contribution from strange quarks
- suppose that $(D_{fav} D_{unf})(x_{low}) > (D_{fav} D_{unf})(x_{high})$

- D_{fav} increases - D_Q^K increases at low x! Less space for S(x)!

- D_{unf} increases D_Q^K decreases at low x more space for S(x), however D_{unf} is rather small, cannot decrease too much
- $5\frac{dN^{K}(x)}{dN^{DIS}(x)} = \int D_{Q}^{K}(z)dz + S(x)/Q(x)\int D_{S}^{K}(z)$
- $D_Q^K = 4D_{fav} + 6D_{unf}$

HERMES Preliminary Results

• $D_{fav} - D_{unf}$ is clearly not well under control!

HERMES Preliminary Results cont.

• fit $D_{fav} - D_{unf}$ by the same functional form as used in HERMES to extract $S(x) \int D_{str}$ and S(x) namely: $x^{\alpha}e - (x/\beta)(1-x) + const!$

Only Coincidence?

I doubt...

LO FF Fit...

- using HERMES preliminary results one can extract FF
- 1st try no x dependence of FF...
- for comparison in the last column FF from DSS fit are given.

	using MSTW08L	using CTEQ6L	DSS
D_{fav}	0.100 ± 0.003	0.096 ± 0.003	0.091
D_{unf}	0.017 ± 0.002	0.018 ± 0.002	0.012
D_{str}	0.45 ± 0.09	0.50 ± 0.09	0.62
χ^2/ndf	75.4/15	57.1/15	_

- the obtained results are not so different from DSS fit
- χ^2/ndf are bad data cannot be described in such a method
- this is the same conclusion as in the HERMES paper!

LO FF Fit cont.

- at this stage of analysis HERMES decided that the culprit is wrong S(x) distribution!
- HERE: I assume that the problem in D_{fav}

	using MSTW08L	using CTEQ6L
D_{fav}	0.093 ± 0.003	0.092 ± 0.003
D_{unf}	0.027 ± 0.002	0.027 ± 0.002
D_{str}	-0.48 ± 0.15	-0.25 ± 0.15
lpha	-0.57 ± 0.04	-0.59 ± 0.06
eta	0.039 ± 0.004	0.033 ± 0.005
χ^2/ndf	9.7/13	8.7/13

• large, by a factor 7-8 , improvement of χ^2/ndf

Impact of D_{fav} x **Dependence on** D_{str}

- large change of D_{str} as expected!
 - NOW: -0.48 ± 0.15 or -0.25 ± 0.15 ; previously $\approx +0.50$
 - assuming $D_{unf} Q^2$ dependence as in DSS, the value of D_{str} is increased by about 0.2-0.25
 - the overlap with physically allowed region is largely increased
 - however, large unphysical value of D_{str} may suggest that there is a problem in the HERMES preliminary multiplicities
- simultaneous fit of D_{fav} and D_{unf} decreased $\chi^2/ndf \approx 5.6/11$, but increases D_{str} uncertainty to about 0.8 useless...
- Data where the multiplicity difference is not understood, hardly can be a reliable source of information about strange quarks!

The HERMES Way...

- what about HERMES way of doing analysis...
 - one can describe multiplicity sum assuming peculiar distribution of S(x)
 - however, since S(x) do not contribute to multiplicity difference the peculiar shapes observed there are not affected!
 - to describe them one has to assume another peculiar distribution of D_{fav} and D_{unf}
 - moreover, a fine tuning of D_{fav} and D_{unf} parameters is needed so that, the peculiarities observed in the multiplicity difference do not bias S(x) extracted from the multiplicity sum!
- The D_{fav} change simultaneously explains observed features in both multiplicity sum and difference! It is much simpler solution than the above!
- even simpler solution is a bug in the HERMES the multiplicities why $D_{fav} D_{unf}$ could have so strong x or Q^2 dependence?

COMPASS Multiplicities...

- COMPASS is on the way to extract h, π, K multiplicities
- some preliminary results are available

The Kaon Multiplicity Sum from COMPASS

• strong x dependence of the $M^{K^++K^-}$ is not observed

• COMPASS analysis prefers low values of D_{str}

• low values of $D_{str} \rightarrow \text{strange quark polarisation solved}...$

COMPASS vs HERMES - the Multiplicity Sum

- clear discrepancy seen between HEREMS and COMPASS for x > 0.1
- BTW. here HERMES newly published data are presented!

COMPASS vs HERMES the Multiplicity Difference

• weak Q^2 dependence of $D_{fav} - D_{unf}$ expected from DSS

– approx 2% dependence for $Q^2 \in (1 - 30)$ GeV² and $z \in (0.2 - 0.3)$

- older COMPASS preliminary data (2012)
- HERMES preliminary one
- error where scaled to obtain $\chi^2/ndf = 1 \leftarrow$ systematic cancellation in the multiplicity difference
- COMPASS D_{F-U} values are flat, contrary to the HERMES ones...

Summary

- the strange quark polarisation is expected to be negative for all values of x
- such a behaviour is not observed while analysing kaon asymmetries
- however, lower than anticipated in DSS fit values of D_{str}/D_{fav} FF can explain the puzzle
- problems seen on the experimental side
- preliminary COMPASS results on kaons multiplicities DO NOT agree with HERMES results
- IMHO: HERMES results due to certain peculiarities might not be a reliable source of information about strange quarks