Hadronic multiparticle production in SIBYLL – from LHC to air showers

Felix Riehn

Institute for Nuclear Physics, Karlsruhe Institute of Technology

LIP-Seminar, 04. May 2016

Ultra-high energy cosmic rays

SIBYLL development

Hadrons

- * quarks & gluons
- * strong force (QCD)
- * valence & sea (structured)
- * Lorentz-contraction
 → disk at high energy

Hadron interactions

Requirements for air showers

• Energy range : GeV .. 10⁶ GeV

- $p, n, \pi^{\pm}, K^{\pm}, \Lambda, \Sigma$
- Forward particle production

$$\eta = -\log \tan(\frac{\theta}{2})$$

HEP models ?

 \rightarrow Extrapolation !

The event generator SIBYLL

* multiple interactions
* soft & hard interactions
* space & momentum structure
* diffractive interactions

Fully inclusive model

$$\sigma_{\rm tot} = 4 \int d^2 \vec{b} \, Im(a(s, \vec{b}))$$

Amplitude?

Eikonal approximation:

$$a(s,\vec{b}) = \frac{i}{2}(1 - e^{-\chi(s,\vec{b})}) \qquad \chi = \sum_{i} \chi_{i} = \frac{1}{2}\sigma_{i}(s)A_{i}(s,\vec{b})$$

 σ_i Parton cross section

 $A_i(s, \vec{b})$ Profile function

 $\sigma_{\mathrm{inel}}, \sigma_{N_{\mathrm{h}}, N_{\mathrm{s}}} \dots$

Hard & soft interactions

$$\sigma_{QCD}(s, p_T^{min}) = \int_{p_T^{min}}^{\infty} dp_T \int dx_1 \int dx_2 \sum_{i,j,k,l} f_i(x_1, Q^2) f_j(x_2, Q^2) \frac{d\hat{\sigma}^{i,j \to k,l}}{dp_T}(\hat{s}, \hat{t})$$

 $f_i(x_i)$: parton distribution function

$$p_{
m T}^{
m min}$$
 :soft / hard

Hard

$$\sigma_{\rm soft} = \mathcal{A}\left(\frac{s}{s_0}\right)^{-\epsilon} + \mathcal{B}\left(\frac{s}{s_0}\right)^{\Delta}$$

: Soft parameterization

 $f_{
m soft}(x_i) \sim \left(rac{1}{x}
ight)^{lpha}$: soft gluons

$$f_{
m lead}(x_i) \sim x^eta$$
 : valence quarks

Event in SIBYLL

Hadronization in SIBYLL

* string fragmentation

$$f(z) = \frac{(1-z)^{\alpha}}{z} e^{-bm_{\rm T}/z}$$

 $f_{\rm lead}(z) = z^{\beta}$

Parameters	Value
u,d : s	0.3
s:c	0.004
qq:q	0.04
Spin0 : spin1	0.3

LHC measurements

Interaction cross section

Two conflicting measurements at TeVatron!

Interaction cross section

Translates into shift in Xmax

Baryon production

Baryon production

TeVatron measurement contradicted by CMS → pre-LHC models too high → Sibyll too low

Particle production

In central phase space p – p interaction well understood

What about the rest ???

Small angle measurements

Small angle measurements

'Muon problem'

* Hybrid events

* Select longitudinal profile p & Fe

* Compare signals in surface detector

Both p and Fe simulations fail to describe signal in surface detector

Missing Muons? Models incomplete? New physics ??

$$R_{\mu} = 1.5 \dots 1.6$$

How to extend the model?

21

Muon production in air showers

 π^0

Meson decay !

$$\pi^{\pm}, K^{\pm} \to \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu}$$

Competition
$$\pi^0 \rightarrow \gamma + \gamma$$

 $n_{\rm chd}$: $n_{\rm tot}$

Muon production in air showers

Heitler-Matthews

 $n_{\rm chd}$: $n_{\rm tot} \to \alpha$

Ratio: 'muon producing' to all particles

$$N_{\mu} = A^{1-\alpha} \left(\frac{E_0}{E_{\rm crit}}\right)^{\alpha}$$

Experimentally (low-energy): $\alpha \approx 0.8 \dots 0.9$

Increase ratio of 'muon producing' to electromagnetic

 $n_{
m chd}$: $n_{
m tot}$

Increase ratio of muon producing to electromagnetic

 n_{chd} : n_{tot}

Leading pions !

Increase ratio of muon producing to electromagnetic

 n_{chd} : n_{tot}

Leading pions !

Baryon production

Increase ratio of muon producing to electromagnetic

 $n_{\rm chd}$: $n_{\rm tot}$

Leading pions !

+ exotic scenarios (new particles, pions stable ...)

Baryon production

Baryon production underestimated

5-10% increase

Leading pions in data

Leading pions in the model

Not reproduced by model !

 $R_{
ho^0}/R_{\pi^0} = 0.3$

Leading pions in the model

Adding new processes and exchanges

 $R_{\rho^0}/R_{\pi^0} = f(x_{\rm F})$

Leading pions in air showers

$$\log N_{\mu} = \log \left(A^{1-\alpha} \right) + \alpha \log \left(\frac{E_0}{E_{\text{crit}}} \right)$$

Energy dependence

Approach entirely phenomenological

Underlying process?

 \rightarrow scaling behaviour?

Effect on muons?

Muons in the new model

Input from theory

'Inelastic screening'

Requires coherence !

Nuclear diffraction

In Sibyll 2.1:

$$\sigma_{\rm diff}^{\rm hNuc} = \sigma_{\rm prod} \, \left(\frac{\sigma_{\rm diff}^{hp}}{\sigma_{\rm inel}^{hp}} \right)^{N_{\rm w}}$$

Sibyll 2.3: calculate diffractive cross section

$$\sigma_{\rm diff}^{\rm hNuc} = \sigma_{\rm diff}^{\rm Glauber} + f_{\rm incoherent} \,\sigma_{\rm prod} \, \left(\frac{\sigma_{\rm diff}^{hp}}{\sigma_{\rm inel}^{hp}}\right)^{N_{\rm w}}$$

Effect of the diff. cross section

Air shower predictions

Muon number

Relative muon number

Comparing primaries

What kind of muons?

Increase in low energy muons

What kind of muons?

Xmax

Relative changes

Xmax **not** unambigous !

Predictions summarized

Deeper Xmax \rightarrow heavier composition \rightarrow larger signal at ground

Increased number of muons → larger signal at ground

Summary & Outlook

Sibyll is alive and well.

- * First LHC results implemented.
- * Contemporary model:
 - beam remnants, leading vector mesons, increased baryon production
- * Destinct feature: charm production

Interaction models: "the same but different"

LHC has boosted development BUT potential not exhausted. Many forward measurements open.

Charm model

Sibyll 2.3

Charm production cross section (mb)

10

10⁰

10

10⁻²

10

E769

LEBC-EHS

LEBC-MPS

HERA-B STAR

PHENIX ALICE

- ALICE |y| < 1

 10^{2}

 10^{3}

Center-of-mass energy \sqrt{s} (GeV)

LHCb fid. D^{0, ±}

 10^{4}

Leading particles - Remnants

Leading particles - remnants

Leading particles - remnants

Why forward physics?

 $\Delta b \Delta p_{\rm T} \sim 1$ Point-like partons $\rightarrow Q^2$ small direkt collisions (small b) are rare $\frac{\mathrm{d}\sigma_{\mathrm{ela}}}{\mathrm{d}O^2} \approx e^{-B_{\mathrm{ela}}Q^2}$ $B_{ela} \sim 20 \text{ GeV}^{-2} \rightarrow \langle Q^2 \rangle \sim 0.5 \text{ GeV}^2$ $p_{\rm T}$ is $\mathcal{O}(0.5 {\rm GeV})$ with $\ln (E_{\rm cm})$ $\theta = \tan(\frac{p_{\rm T}}{p_z}) \approx \frac{p_{\rm T}}{p_z}$ p_z is $\mathcal{O}(E_{\rm cm})$ dN/dŋ $p+p \rightarrow charged$

Most energy at small angles ! the larger the energy the smaller the angle

Event types

No color exchange (diffractive)

Modelling hadron interactions

$$\mathrm{d}\sigma_{pp\to\mathrm{final state}} = |\mathcal{M}|^2 \prod_{\mathrm{final state}} \frac{\mathrm{d}\vec{p_i}}{E_i}$$

Problems.. * complex final state

* Amplitude unknown

 $\alpha_{\rm s} \approx 1$

What are we doing?

