COMPASS & The Transverse Momentum Dependent Parton Distribution Functions

Márcia Quaresma, LIP - Lisbon

20th February 2016, Jornadas LIP 2016 Braga

Jornadas LIP 2016

Members of COMPASS group at LIP

Seniors:

Paula Bordalo Group Leader

Post-docs:

PhD Students:

Márcia Quaresma Ana Sofia Nunes

Sérgio Ramos CB member

Luís Silva

Catarina Quintans DY Sub<u>group Co</u>ordinator

Marcin Stolarski Pub<u>Com me</u>mber

Engineer: Christophe Pires

COMPASS experiment at CERN

COmmon Muon Proton Apparatus for Structure and Spectroscopy

- Fixed target experiment at the end of M2 SPS beam line
- Around 240 collaborators from 13 countries and 23 institutes
- Data taking since 2002 and approved up to 2018

Two main physics programs:

- O DIS programme and Drell-Yan programme: Spin dependent nucleon structure
- Hadron/Spectroscopy programme: Pion polarizability, hadron spectroscopy, exotic searches.

Márcia Quaresma (LIP

COMPASS setup

• Particles identification: calorimeters, RICH and μ Filters 60 cm

Thin Nuclear Target

LIP group contributions

COMPASS LIP outputs from DY and SIDIS programmes

This talk:

- Multi Dimensional Analysis of the Transversity Data
- Gluon Sivers Asymmetry
- Polarised Drell-Yan measurement

Sofia's talk:

- Gluon Polarisation
- Effects in low x and low Q^2 region
- Multiplicities

Full LIP responsibility

Christophe's talk:

• Detector Control System

Nucleon structure - TMD PDFs

The nucleon structure in leading order QCD, taking into account k_T , is described by 8 PDFs for each quark flavour.

DY and SIDIS processes

The DY and SIDIS cross-sections can be written in terms of angular modulations and the amplitudes of these modulations contain:

Experimental extraction of the amplitudes:

$$\frac{N_u(\phi_S,\phi_h)^{\downarrow}N_d(\phi_S,\phi_h)^{\downarrow}}{N_d(\phi_S,\phi_h)^{\uparrow}N_u(\phi_S,\phi_h)^{\uparrow}}$$

Measurement of the azimuthal angle asymmetries between the 2 transversely and oppositely polarised target cells.

DY and SIDIS cross sections in terms of asymmetries DY: $\frac{d\sigma}{d^4 q d\Omega} = \frac{\alpha^2}{E \sigma^2} \hat{\sigma}_U \left\{ \left(1 + D_{[\sin^2(\theta)]} A_{UU}^{\cos(2\phi)} \cos(2\phi) \right) + |\vec{S}_T| \left[A_{UT}^{\sin(\phi_S)} \sin(\phi_S) \right] \right\}$ $+D_{[\sin^{2}(\theta)]}\left(A_{UT}^{\sin(2\phi+\phi_{S})}\sin(2\phi+\phi_{S})+A_{UT}^{\sin(2\phi-\phi_{S})}\sin(2\phi-\phi_{S})\right)\right]\Big\}$ SIDIS: $\frac{d\sigma}{dxdydzd\psi d\phi_{h}dP_{hT}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)\left(F_{UU,T}+\varepsilon F_{UU,L}\right)\times$ $\left\{1+\sqrt{2\varepsilon(1+\varepsilon)}\cos(\phi_h)A_{UU}^{\cos(\phi_h)}+\varepsilon\cos(2\phi_h)A_{UU}^{\cos(2\phi_h)}+P_l\sqrt{2\varepsilon(1-\varepsilon)}\sin(\phi_h)\overline{A_{LU}^{\sin(\phi_h)}}\right\}$

 $+S_{T}\left[\sin(\phi_{h}-\phi_{S})A_{UT}^{\sin(\phi_{h}-\phi_{S})}+\varepsilon\sin(\phi_{h}+\phi_{S})A_{UT}^{\sin(\phi_{h}+\phi_{S}-\pi)}+\varepsilon\sin(3\phi_{h}-\phi_{S})A_{UT}^{\sin(3\phi_{h}-\phi_{S})}\right]$

$$+\sqrt{2\varepsilon(1+\varepsilon)}\sin(\phi_{S})A_{UT}^{\sin(\phi_{S})}+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h}-\phi_{S})A_{UT}^{\sin(2\phi_{h}-\phi_{S})}$$

$$+S_{T}P_{I}\left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h}-\phi_{S})A_{LT}^{\cos(\phi_{h}-\phi_{S})}+\sqrt{2\varepsilon(1-\varepsilon)}\cos(\phi_{S})A_{LT}^{\cos(\phi_{S})}\right.\\\left.+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})A_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right]\bigg\}$$

All the asymmetries are extracted together using the Unnbined Maximum Likelihood Method.

Márcia Quaresma (LIP

DY asymmetries and TMD PDFs DY:

$$\begin{split} A_{UU}^{\cos(2\phi_{CS})} &\propto h_{1,\pi}^{\perp q} \otimes h_{1,\rho}^{\perp q} \;\; \text{Boer-Mulders} \\ A_{UT}^{\sin(\phi_S)} &\propto f_{1,\pi}^q \otimes f_{1T,\rho}^{\perp q} \;\; \text{Sivers} \\ A_{UT}^{\sin(2\phi_{CS}-\phi_S)} &\propto h_{1,\pi}^{\perp q} \otimes h_{1,\rho}^q \;\; \text{Transversity} \\ A_{UT}^{\sin(2\phi_{CS}+\phi_S)} &\propto h_{1,\pi}^{\perp q} \otimes h_{1T,\rho}^{\perp q} \;\; \text{pretzelosity} \end{split}$$

SIDIS:

 $A_{IIII}^{\cos(\phi_h)} \propto Q^{-1} \left(f_1^q \otimes D_{1q}^h - h_1^{\perp q} \otimes H_{1q}^{\perp h} + ...
ight)$ $A_{III}^{\cos(2\phi_h)} \propto h_1^{\perp q} \otimes H_{1g}^{\perp h} + Q^{-1} \left(f_1^q \otimes D_{1g}^h + ... \right)$ $A_{\mu\tau}^{\sin(\phi_h-\phi_S)} \propto f_{1\tau}^{\perp q} \otimes D_{1q}^h$ $A_{\mu\tau}^{\sin(\phi_h+\phi_S)} \propto h_1^q \otimes H_{1q}^{\perp h}$ $A_{\mu\tau}^{\sin(3\phi_h-\phi_S)} \propto h_{1\tau}^{\perp q} \otimes H_{1q}^{\perp h}$ $A_{IT}^{\cos(\phi_h - \phi_S)} \propto g_{1T}^q \otimes D_{1q}^h$ $A_{IIT}^{\sin(\phi_{S})} \propto Q^{-1} \left(h_{1}^{q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^{h} + ... \right)$ $A_{IIT}^{\sin(2\phi_h - \phi_S)} \propto Q^{-1} \left(\frac{h_{1T}^{\perp q}}{h_{1T}} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^{h} + \dots \right)$ $A_{IT}^{\cos(\phi_{S})} \propto Q^{-1} \left(g_{1T}^{q} \otimes D_{1q}^{h} + ... \right)$ $A_{IT}^{\cos(2\phi_h-\phi_S)}\propto Q^{-1}\left(g_{1T}^q\otimes D_{1q}^h+...
ight)$

COMPASS results on Sivers asymmetry

COMPASS proton data from 2007 and 2010 (Phys.Lett. B744 (2015) 250)

The experiments point to some Q^2 evolution

Márcia Quaresma (LIP

Jornadas LIP 2016

Multi-Dimensional Analysis

Marcia's contribution

Márcia Quaresma (LIP

Gluon Sivers Asymmetry

Nucleon spin decomposition:

Luis' contribution

LIP Contributions to DY experiment

Open and asymmetric COMPASS spectrometer \Rightarrow DIS measurement

New philosophy for the DY experiment:

- Inclusion of a hadron absorber \Rightarrow Closed spectrometer
 - Absorber design \Rightarrow length and material
- Detection of muon pairs ⇒ Symmetrisation
 - Symmetrisation of the old very forward spectrometer hodoscopes
- Design of two large trigger hodoscopes
- Redefinition of the trigger matrices
- New vertex reconstruction philosophy
- MC simulations \Rightarrow Estimates of event rates
- Detector planes efficiency per wire

Drell-Yan measurement - 2014 pilot run

Marcia's and Catarina's contributions

- NH₃ target not polarised, also Al and W targets
- A vertex detector, but not fully operational
- I_{beam} \sim 7 imes $10^7\pi/s$
- 17 days of stable data taking used for the analysis
- Alignment of the spectrometer trackers Marcia's responsibility

Clear signal from all the targets: Ammonia, aluminum and tungsten. \downarrow Reasonable Z_{vtx} resolution For 2015 data \Rightarrow The vertex reconstruction philosophy was completely changed to give priority to the muon pairs \hookrightarrow Developed by Celso

DY 2014 pilot run - Results

- First COMPASS unpolarised high mass DY data
- Clear J/ψ signal

• $M_{\mu\mu}>4~{
m GeV}/c^2\sim 7000~\mu^+\mu^-$ pairs from NH_3 target

 $\begin{array}{l} \mbox{Comparison data} <> \mbox{MC ongoing} \Rightarrow \mbox{Detectors Efficiency per plane and per wire} \\ \hookrightarrow \mbox{Implemented in the reconstruction of the MC events} \Rightarrow \mbox{Implemented by Luis} \end{array}$

Polarised Drell-Yan measurement - 2015 run

Marcia's, Catarina's, Celso's and Luis' contributions

1st World Experiment

NH₃ polarised target (plus AI and W targets)

$$\circ~\textit{I}_{beam} \sim 10^8 \pi/{
m s}$$
 - very high intensity

- $\bullet\,$ The analysis of these data is ongoing \Rightarrow One period already produced
- $M_{\mu\mu}>4~{
 m GeV}/c^2\sim$ 80000 $\mu^+\mu^-$ pairs expected from polarised target

• $\delta A_{UT}^{\sin(\phi_S)} \sim 2.8\% \Rightarrow$ Models predict $A_{UT}^{\sin(\phi_S)}$ from 5% to 10%

BACKUP SLIDES

COMPASS Experimental Programme

COMPASS - I	2002 - 2004 2006	2007	2008 - 2009 2012	2010	2011
$\begin{array}{c} \text{DIS} \\ \text{Nucleon Spin} \\ \text{Structure:} \\ g_1, h_1, \Delta q, \Delta_T q \end{array}$	⁶ LiD – Polarised L & T) μ ⁺ (160 GeV)	${f NH_3} - {f Polarised L} \ \mu^+ \ (160 \ GeV)$		${f NH_3} - {f Polarised T} {\mu^+} \ (160 \ GeV)$	${f NH_3}-{f Polarised L}\ \mu^+\ (200 \ GeV)$
Hadron Spectroscopy: Exotics,hybrids, π polarisability			Several targets non - polarised π ⁻ (190 GeV)		

COMPASS - II	2015	2016 - 2017
DY Nucleon Spin Structure TMDs: h ₁ , h ^T ₁ , h ^T _{1T} , f ^T _{1T}	$\begin{array}{c} \mathbf{NH}_{3}-\text{Polarised T} \\ \pi^{-} (190 \text{ GeV}) \\ \hline \\ \text{First world exp.} \end{array}$	
DVCS GPDs - 3D Nucleon picture		LH ₂ non- polarised target μ ⁺ (160 GeV)

Collaboration in the COMPASS CERN experiment

Paula Bordalo

6

Short and mid-term Programme

≻ 2015 →

- LIP leading role in the analysis of the dimuon high mass (4-9 GeV/c²) DY region:
 - Measurement of azimuthal asymmetries, giving access to TMD PDFs
 - Check of the QCD prediction that TMDs functions, although universal, change sign between SIDIS and DY processes

> 2016/2017 →

- Unpolarised Deep Virtual Compton Scattering (DVCS) programme (tridimensional nucleon structure functions – Generalized Parton Distributions, GPDs)
- Study of hard exclusive processes:
 - DVCS and HEMP (Hard Exclusive Meson Production), using muons impinging on an unpolarised liquid hydrogen target
 - Extraction of unpolarised GPDs, aiming to the nucleon's 3-dimensional description

> 2019 ?

 Data taking relative to the measurement of the polarised Drell-Yan physics (TMD PDFs characterization) – statistics improvement

> 2020 ?

Data taking for polarised DVCS and HEMP physics

Paula Bordalo

Collaboration in the COMPASS CERN experiment