Results on COMPASS longitudinally polarised data from LIP

Ana S. Nunes (LIP-Lisbon)

Jornadas do LIP 2016, 19-21 February 2016, Braga

Aknowledgements:

FCT Fundação para a Ciência e a Tecnologia

CERN/FIS-NUC/0017/2015

Introduction

2 Gluon polarisation in the nucleon using a new method

3 Spin structure function of the proton in the non-perturbative region

4 Hadron multiplicities in muoproduction on nucleons

Summary and outlook

Nucleon spin

Decomposition

$$S = \frac{1}{2} = \frac{1}{2} \underbrace{\Delta \Sigma}_{\text{quarks}} + \underbrace{\Delta G}_{\text{gluons}} + \underbrace{L_q + L_q}_{\text{orbital angular momenta}}$$
$$\Delta \Sigma = \Delta u + \Delta d + \Delta s$$

$$= \Delta u_v + \Delta d_v + 2\Delta \bar{u} + 2\Delta \bar{d} + \Delta s + \Delta \bar{s}$$

 $\begin{array}{l} \Delta q \equiv \Delta (q + \bar{q}) \\ \Delta q = \overline{q} - \overleftarrow{q} \quad \text{(parallel minus antiparallel to the nucleon spin)} \\ \mathbf{g}_1(\mathbf{x}, \mathbf{Q}^2) \simeq \sum_q e_q^2 \Delta q(\mathbf{x}, \mathbf{Q}^2) \end{array}$

"Spin crisis"

- ${\small { \bullet } }$ Relativistic quark model prediction: $\Delta \Sigma \simeq 0.6$
- EMC measurement (1988): $\Delta\Sigma = 0.12 \pm 0.17$

Recent status

- Quarks spin contributes only about 30% to the nucleon spin
- Gluon contribution constrained only for a limited x range
- Very few experimental results on orbital angular momentum

(SI)DIS and spin observables

Experimental asymmetry

$$\mathbf{A}_{exp} = \frac{N^{\overrightarrow{\leftarrow}} - N^{\overrightarrow{\Rightarrow}}}{N^{\overrightarrow{\leftarrow}} + N^{\overrightarrow{\Rightarrow}}} = P_{beam} P_{target} f A_{\parallel}$$

Lepton-nucleon asymmetry

$$A_{\parallel} = \frac{d\sigma^{\overrightarrow{\leftarrow}} - d\sigma^{\overrightarrow{\Rightarrow}}}{d\sigma^{\overrightarrow{\leftarrow}} + d\sigma^{\overrightarrow{\Rightarrow}}} \simeq DA_{1}$$

$$\begin{split} & k_{\mu} = (E_{\mu}, \mathbf{k}_{\mu}) \\ & k'_{\mu} = (E'_{\mu}, \mathbf{k}'_{\mu}) \\ & P = (M, 0) \\ & q = k_{\mu} - k'_{\mu} = (\nu, \mathbf{q}) \\ & Q^2 = -q^2 \\ & \nu = P \cdot q/M = E_{\mu} - E'_{\mu} \\ & W^2 = M^2 + 2M\nu - Q^2 \\ & x = Q^2/(2M\nu) \\ & y = \nu/E_{\mu} \\ & z = E_h/(E_{\mu} - E_{\mu'}) \end{split}$$

Virtual photon-nucleon asymmetry

$$A_{1} = A_{1}^{\gamma^{*}N} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \simeq \frac{g_{1}}{F_{1}}$$

Spin dependent structure function g_1

$$\mathbf{g_1}(\mathbf{x}, \mathbf{Q^2}) \simeq \frac{F_2(\mathbf{x}, \mathbf{Q^2})}{2\mathbf{x}(1 + R(\mathbf{x}, \mathbf{Q^2}))} A_1(\mathbf{x}, \mathbf{Q^2}) \quad \text{with } R \equiv \frac{\sigma_L}{\sigma_T}$$

Gluon polarisation in the nucleon using a new method

$$\frac{\Delta G}{G} = \int_0^1 \frac{\Delta g}{g} \, dx$$

Access to $\Delta g/g$ in COMPASS

Measuring longitudinal double spin asymmetries in:

- open charm meson production [PRD 87 (2013) 052018, Celso Franco's PhD]
- high-p_T hadron pair production in DIS [PLB 718 (2013) 922, Luís Silva's PhD]
- NLO QCD fits to g₁ world data [PLB 753 (2016) 18]
- high-p_T hadron quasi-real photoproduction [PLB 753 (2016) 573]
- all- p_T hadron production in DIS

[hep-ex/1512.05053, Marcin Stolarski's analysis]

Photon-nucleon processes:

Leading process

QCD Compton

Photon-gluon fusion

Gluon polarisation in the nucleon: results

Data: 2002-2006, $\mu^+ d \to \mu^+ h X$

 $\langle \Delta g/g \rangle = 0.113 \pm 0.038_{({\rm stat.})} \pm 0.036_{({\rm syst.})}$ @ $\langle x_{\rm g} \rangle \approx 0.10$, $Q_0^2 = 3 \ ({\rm GeV}/c)^2$

- Improved statistical and systematic errors with respect to the high-p_T hadron pair analysis (by factors 1.6 and 1.8 respectively)
- World's most precise $\langle \Delta g/g \rangle$ extracted in LO
- Positive solution of ΔG favoured (out of two COMPASS NLO QCD fits of g_1 world data)

Spin structure of the proton in the non-perturbative region

Motivation

- Iow x corresponds to high parton densities
- the low x and low Q² region allows to access the transition from the regime of photoproduction to the regime of DIS (described by pQCD)
- extraction of A_1^p and g_1^p as functions of x and ν showed, for the first time, positive spin effects at very low x (cf. $A_1^d \sim 0$ at low x, and SMC sample 150x smaller)
- theoretical models make predictions for g_1^{ρ} as function of two kinematic variables [Eur.Phys.J. C26 (2002) 45; Eur.Phys.J. C58 (2008) 29; Riv.Nuovo Cim. 33 (2010) 57]
- ullet more than enough data ($\sim 7 imes 10^8$ events) for a 2D extraction
- extraction, for the first time, in 4 2D grids: (x, Q^2) , (ν, Q^2) , (x, ν) , (Q^2, x)

Phase-space coverage

A_1^p and g_1^p at low x and low Q^2 : results for the grid (x, Q^2)

Data: 2007&2011, $\mu^+
ho
ightarrow \mu^+ X$

no big dependence with x or Q² (nor with the other variables)

• results compatible with theoretical models [Eur.Phys.J. C26 (2002) 45]

Longitudinal results from LIP (COMPASS)

Hadron multiplicities in muon-deuteron scattering

Motivation

- The quark fragmentation functions (FFs) are non-perturbative, process independent objects
- FFs are needed for global pQCD fits
- COMPASS unpolarised data can give access to FFs via pion and kaon multiplicities in SIDIS:

$$\frac{dM^{h}}{dz} \stackrel{=}{\underset{\text{at LO}}{=}} \frac{\sum_{q} e_{q}^{2} f_{q}(x, Q^{2}) \mathsf{D}_{q}^{h}(z, \mathbf{Q}^{2})}{\sum_{q} e_{q}^{2} f_{q}(x, Q^{2})}$$

 Hadron multiplicity ≡ mean number of hadrons per DIS event

Longitudinal results from LIP (COMPASS)

Hadron multiplicities: results

Data: 6 weeks of 2006, $\mu^+ d
ightarrow \mu^+ h^\pm X$

- \sim 400 data points for π w/ strong z dependence, $M_{\pi^+}\gtrsim M_{\pi^-}$
- ullet \sim 400 data points for K w/ strong z dependence, $M_{K^+} > M_{K^-}$
- Also measured: p_T dependence

Longitudinal results from LIP (COMPASS)

- The COMPASS group at LIP is very active in the analysis of the experiment's wealthy SIDIS data obtained with a longitudinally polarised target
- Important contributions have been given to the analysis of:
 - gluon polarisation in the nucleon obtained with a new method [MS] (2 peer-reviewed internal notes, paper submitted to PLB)
 - spin structure of the proton in the non-perturbative region [ASN, MS] (2 peer-reviewed internal notes, writing of paper ongoing)
 - hadron multiplicities in muon-deuteron SIDIS [MS]
 (4 peer-reviewed internal notes, writing of 2 papers ongoing)
- Much more unpolarised SIDIS data are available and will be collected in 2016 and 2017, and the LIP group can continue to contribute to it's analysis

BACKUP

COMPASS experiment

COMPASS @ CERN

COmmon Muon Proton Apparatus for Structure and Spectroscopy

- Fixed target experiment at the SPS using a tertiary muon beam
- Collaboration of about 200 members from 11 countries and 23 institutions

- 160/200 GeV μ^+ polarised beam, $P_{\rm b} \sim -80\%$
- ⁶LiD or NH₃, 1.2 m long, polarised target @ 2.5 T and 60 mK, $P_{target} \sim 50/85\%$
- Iarge acceptance, two staged spectrometer
- tracking, calorimetry, RICH

Polarised target

Material	Dilution factor	Polarisation	
⁶ LiD	0.40	50%	
NH ₃	0.16	85%	

Vertex coordinate *z_{PV}*

Target polarisation in 2011

COMPASS data taking for the spin program

Year	Beam		Target		
	Particles	Energy (GeV)	Material	Cells	Magnetic field (T)
2002	muons	160	⁶ LiD	2	long. ±2.5; transv. 0.42
2003	muons	160	⁶ LiD	2	long. ±2.5; transv. 0.42
2004	muons	160	⁶ LiD	2	long. ±2.5; transv. 0.42
2006	muons	160	⁶ LiD	3	long. ± 1.0
2007	muons	160	NH ₃	3	long. ±1.0; transv. 0.63
2010	muons	160	NH ₃	3	transv. 0.63
2011	muons	200	NH ₃	3	long. ±2.5
2012	muons	160	H ₂	1	0.0
2014	hadrons	190	NH ₃	2	0.0
2015	hadrons	190	NH ₃	2	transv. 0.63
2016	muons	160	H ₂	1	0.0
2017	muons	160	H ₂	1	0.0

Data covered in this talk, analysed @ LIP in 2014-2016 by Marcin Stolarski and ASN.

Results on g_1^d and $g_1^{\, ho}$ in DIS $(Q^2>1~{ m GeV}^2/c^2)$ (PLE 753 (2016) Tell

- New COMPASS point for the proton at low x
- New COMPASS NLO QCD fit describes the data well

Longitudinal results from LIP (COMPASS)

Inputs and constraints for NLO QCD fit

• 139 out of 674 points are from COMPASS

•
$$g_1^{p(n)} = \frac{1}{9} \left[C_S \otimes \Delta \mathbf{q}_S + C_{NS} \otimes \left(\pm \frac{3}{4} \Delta \mathbf{q}_3 + \frac{1}{4} \Delta \mathbf{q}_8 \right) + C_g \otimes \Delta \mathbf{g} \right]$$

•
$$\Delta q_S = \Delta u + \Delta d + \Delta s$$
 (spin singlet parton distribution)

•
$$\Delta q_3 = \Delta u - \Delta d$$
 (triplet non-singlet spin distribution)

- $\Delta q_8 = \Delta u + \Delta d 2\Delta s$ (octet non-singlet spin distribution)
- C_S , C_{NS} , C_g : Wilson coefficients associated to each distribution
- Functional forms are assumed at a given reference scale Q₀²
- $SU(3)_f$ to fix the non-singlet distributions first moments: $\int_0^1 (\Delta u - \Delta d) dx = F + D = g_A/g_V$ and $\int_0^1 (\Delta u + \Delta d - 2\Delta s) dx = 3F - D$
- Positivity: $|\Delta g(x)| < |g(x)|$ and $|\Delta(s(x) + \bar{s}(x))| < |s(x) + \bar{s}(x)|$

NLO QCD fit results (PLB 753 (2016) 18]

• Depending upon assumed functional forms, 2 categories of solutions: $\Delta G > 0$ and $\Delta G < 0$

- Gluon polarisation: △G not well constrained by the fit
 → direct measurements needed
- Quark polarisation: $0.26 < \Delta\Sigma < 0.34$ @ $Q_0^2 = 3 (GeV/c)^2 (\overline{MS}) \hookrightarrow$ largest uncertainty from functional forms
- Large uncertainty at very low x for g_1^p and g_1^d

$A_1^{ ho}$ and $g_1^{ ho}$ at low x and low Q^2 : results for the grid (u, Q^2)

Data: 2007&2011, $\mu^+ p \to \mu^+ X$

- no big dependence with u or Q^2
- results compatible with theoretical models [Eur.Phys.J. C26 (2002) 45]

A_1^p and g_1^p at low x and low Q^2 : results for the grid (ν, x)

Data: 2007&2011, $\mu^+
ho
ightarrow \mu^+ X$

- no big dependence with ν or x
- results compatible with theoretical models [Eur.Phys.J. C26 (2002) 45]

A_1^p and g_1^p at low x and low Q^2 : results for the grid (Q^2, x)

Data: 2007&2011, $\mu^+
ho o \mu^+ X$

- no big dependence with x or Q^2
- results compatible with theoretical models [Eur.Phys.J. C26 (2002) 45]

Longitudinal results from LIP (COMPASS)

Ana S. Nunes (LIP-Lisbon)

Jornadas LIP 2016 22

Fragmentation functions: results

Assuming isospin and charge symmetry: D^{π+}_{fav} = D^{π+}_u = D^{π+}_d = D^{π-}_d = D^{π-}_u D^{π+}_{unf} = D^{π+}_d = D^{π+}_u = D^{π-}_d = D^{π+}_d. Assuming D^{π+}_s = D^{π+}_s = D^{π+}_{unf}, choosing funct. forms for FFs (z) and using DGLAP.
Fitting π⁺ and π⁻ multiplicities allows to extract the 2 independent FFs:

- As expected, $D_{fav}^{\pi^+} > D_{unf}^{\pi^+}$
- Results in fair agreement with DSS and LSS NLO fits (not shown)

• Assuming isospin symmetry and 3 independent quark FFs: D_{fav} , D_{wnf}^{K} , D_{str}^{K}

- As expected, $D_{fav}^{K^+} > D_{unf}^{K^+}$
- D^{K+}_{fav} and D^{K+}_{unf} significantly larger than DSS and LSS NLO fits (which do not include these kaon data)
- Results for D^K_{str} not shown. Unstable, depends on choice of functional form

Hadron multiplicities: comparison with HERMES

- The discrepancy COMPASS-HERMES is not yet understood
- Contribution by M. Stolarski, Comment on "Reevaluation of the parton distribution of strange quarks in the nucleon" [PRD 92 (2015) 098101]

Longitudinal results from LIP (COMPASS)