

F. Diogo on behalf of the Auger Group Jornadas LIP

 $20^{th}\ {\rm February}\ 2016$

Cosmic Ray Energy Spectrum

Ultra High Energy Cosmic Rays

Open (and interconnected) questions

- Determine the sources of these cosmic rays
- Study the **propagation** through the intergalactic medium
- Determine the elemental composition of cosmic rays
- Study extensive air showers -> particle interactions

Above 10^{20} eV (50 Joules!): $\Phi \approx 1 \text{ per km}^2 \text{ per century}$

 High energy cosmic rays interact with the atmosphere, multiplying and creating an air shower

 High energy cosmic rays interact with the atmosphere, multiplying and creating an air shower

- High energy cosmic rays interact with the atmosphere, multiplying and creating an air shower
- Shower keeps developing until particles reach a minimum critical energy -Shower maximum

- High energy cosmic rays interact with the atmosphere, multiplying and creating an air shower
- Shower keeps developing until particles reach a minimum critical energy -Shower maximum

- High energy cosmic rays interact with the atmosphere, multiplying and creating an air shower
- Shower keeps developing until particles reach a minimum critical energy -Shower maximum
- Two methods of (indirect) detection
 - sample the particles hitting the ground
 - detection of fluorescence light from de-excitation of atmospheric molecules

Auger Results - Spectrum

Precise spectrum in almost 3 decades in energy

■ SD (1500m) + SD (750m) + FD

- Suppression at around 10^{19.6} eV
 - compatible with the GZK prediction

Shower maximum

- Main composition variable in UHECR is X_{max}
- Auger has the most precise measurement, now in a larger energy range
 - HEAT extends the energy range down to 10^{17} eV

Combining X_{max} and $\sigma(X_{max})$

- EPOS-LHC infers a mostly pure composition above $10^{18.5}$ eV
- QGSJETII04 infers an unphysical $RMS(\ln[A])$ at 1.5σ

Combining Spectrum and X_{max}

Fit parameters: source flux, p-He-N-Fe fractions, spectral index γ and rigidity cutoff R_{cut} Homogeneous distribution of sources

- Very mixed composition between $10^{18.5}$ and 10^{20} eV is favoured
- Best fit has unexpectedly very hard injection spectra: $\gamma < 1$
 - $\bullet \ \ \, {\rm Fermi \ mechanism} \to \gamma > 2$
- Flux limited by exhaustion at sources (instead of GZK?)
- But still many fit parameters and astrophysical assumptions...

Muon content

Data incompatible with all current hadronic interaction models

■ deficit of muons in models between 30% and 80%

Effect is more pronounced in the $X_{max}: N_{\mu}$ plane

- observables from FD and SD provide tighter constraints
 - accessing different components of the shower

Auger status

Astrophysical interpretations of Auger data (X_{max} +Spectrum) indicate

- transition towards heavier composition
- but completely unexpected injection spectrum at the sources

However, the combined interpretation of all variables show that post-LHC hadronic interaction models cannot provide a consistent description of the shower

Auger status

Astrophysical interpretations of Auger data (X_{max} +Spectrum) indicate

- transition towards heavier composition
- but completely unexpected injection spectrum at the sources

However, the combined interpretation of all variables show that post-LHC hadronic interaction models cannot provide a consistent description of the shower

At LIP we are focused on studying the shower physics

- understand the shower dynamics
- explore new shower variables
- develop new analysis
- improve systematics
- develop new technologies for shower detection

Measuring the electromagnetic profile shape

- N_{max} (energy) and X_{max} (composition) have been measured before
- We normalize and translate each profile by them respectively
- The shape can be parametrized by a Gaisser-Hillas (GH) function with two variables:

$$N' = \exp\left(-\frac{1}{2}\left(\frac{X'}{L}\right)^2\right) \prod_{n=3}^{\infty} \exp\left(-\frac{R^{n-2}}{n}\left(-\frac{X'}{L}\right)^n\right)$$

Gaussian(L) X Distortion(R)

Measuring the electromagnetic profile shape

- N_{max} (energy) and X_{max} (composition) have been measured before
- We normalize and translate each profile by them respectively
- The shape can be parametrized by a Gaisser-Hillas (GH) function with two variables:

$$N' = \exp\left(-\frac{1}{2}\left(\frac{X'}{L}\right)^2\right) \prod_{n=3}^{\infty} \exp\left(-\frac{R^{n-2}}{n}\left(-\frac{X'}{L}\right)^n\right)$$

Gaussian(L) X Distortion(R)

First proof that average profiles in data are described by a GH!

Shape parameters - energy evolution

- Proton full lines, Iron in dashed lines
- dominated by systematic uncertainties atmospheric aerosols
- L measurement compatible with models
- R e.m. shower develops faster with increasing energy
 - opposite of model predictions
 - indication of changes in interaction properties!

Extensive Air Shower - Muonic Component

Extensive Air Shower - Muonic Component

Muonic

- hard to measure: no signal in FD, hard to disentagle from e.m signal in SD
- muons interact scarcely with the atmosphere
- preserve information from their production point

Extensive Air Shower - Muonic Component

Muonic

- hard to measure: no signal in FD, hard to disentagle from e.m signal in SD
- muons interact scarcely with the atmosphere
- preserve information from their production point

LIP plays a leading role in the muon analysis at Auger

- coordination of this task
- data analysis and phenomenology

Muon Production Depth (MPD)

Muon production point can be calculated $\rightarrow X^{\mu}_{max}$

Bracketed by QGSJetII, incompatible with EPOS

Muon Production Depth (MPD)

Muon production point can be calculated $\rightarrow X^{\mu}_{max}$

Bracketed by QGSJetII, incompatible with EPOS

 X_{max}^{μ} predicts different $\ln[A]$ than X_{max} in both models!

 $\blacksquare~1.5\sigma$ for QGSJETII04 and $>6\sigma$ for EPOS-LHC

$RMS(N_{\mu})$ - Fluctuations of the shower muon content

Phenomenological studies show that this is the most powerful variable to test new physics

• Preliminary measurement of the $RMS(N_{\mu})$ done at LIP

Lateral Distribution Function shape in SD

The lateral distribution of files at ground is also composition dependent It is sensitive to both muonic and electromagnetic components

Event-to-event we do not have enough resolution to separate composition

- but building the average LDF we can measure the slope
- \blacksquare comparing with models ok at low angles, larger β in data at high angles
 - muon spectrum problem, not normalization
- preliminary results

Our current path

To really understand Auger data we need to reduce systematics and access the muonic component independently!

Understand air showers dynamics and the e.m./muon interplay

- they come from the same primary so are not independent
- but each process affect with in a different way
- proposal for a dedicated muon detector (MARTA)
- N_{μ} independent from energy
- prototypes already working in the pampa (R. Luz talk)

Conclusion

New results from Auger are at odds with current hadronic/astrophysical models:

- particularly, the muon sector is poorly predicted
- disagreement increases with energy

The Auger group is pursuing three (complementary) ways to go forward:

- measuring new independent variables
- parametrize and model the different shower components
- decrease systematics new generation detectors (R. Luz talk)