HADES

Exploring dense and cold matter

Luís Silva (LIP) Jornadas 2016, Braga

Exploring Dense and Cold Matter

Courtesy of C. Behnke

eating

Compression

- SIS 18 energy regime: Beam energies of 1-3.5 GeV/u in ion systems, baryon dominated rather long living.
- Rare and penetrating probes.
- Stage I (2002 2008): Limited granularity of time-of-flight
 - > system light collision systems
- Stage II (2012 2015): Heavy collisionsystems and π-induced reactions
- Stage III (2018): Lepton pair excitation function up to 8 GeV/u (medium-heavy systems) and (multi-)strange particle

HADES @ GSI, Darmstadt High Acceptance Di-Electron Spectrometer

- Seams from SIS 18: π, protons and nuclei.
- Full azimuthal coverage.
- ✤ Polar angle: 18° to 85°.
- Lepton and Hadron identification:
 - RICH and Shower for lepton.
 - Time of Flight measurement: ToF Wall + RPC Wall
 - Tracking with 4x6 multiwire drift chamber.
- 50 KHz event rate (400 MByte/s peak data rate).

HADES Event Reconstruction

Acquired Data Sets

Very good particle identification.

Vertex reconstruction with high resolution.

HADES Event Reconstruction

Reconstructing Invariant mass spectrum with RPCs

<u>K⁻ peak</u> is clearly visible, which is a very demanding test on the apparatus time response as well as granularity due to their extreme rarity (K⁻ is produced at sub-threshold energy): about one per 10000 anti-pions

> Optimising quality cuts using RPC

Invariant Mass Spectrum (RPC)

Physics Programme

Combined studies of dielectron and strangeness production using several systems:

Dielectrons:

- Studies of properties of the low-mass, i.e. 0.14 < M_{e+e-} < 0.5 GeV/c², dielectron excess.
- Vector meson ($\rho / \omega / \phi$) spectroscopy in the dielectron channel.

Strangeness:

- K⁰, K⁺ and K⁻ production characteristics from transverse momentum, rapidity and flow measurements.
- ϕ meson production via the K⁺K⁻ decay channel.
- Studies of strange baryon production: Λ (1115), Σ (1385) and Ξ -(1321).

Dielectrons

Yield excess for heavy systems in Dielectron analysis.

Nucleon and light nuclei systems scale in the same way

While for heavier systems there is an excess in the region $0.15 < M_{e+e} < 0.6 \text{ GeV/c}^2$

LIP Group Contribution

LIP group responsibilities and activities are focused in two aspects:

- Hardware:
 - RPC operation, monitoring, maintenance, calibration and optimisation.
- Analysis:
 - Dielectron In-medium properties from e+e- mass spectrum studies.
 - A new method of lepton identification based on a dynamic neural network.
 - Kaon optimisation PID using RPC.

From Light to Heavy Systems

From Light to Heavy Systems

One Au + Au collision from Hgeant simulation

Lots of particles (up to \sim 40/sector)

High Multiplicity

High Detector Granularity

RPC

Aluminium

Spring-loaded pressure plate

HV & readout in the center

Glass

One cell

 $\langle \sigma_t \rangle = 64$ ps for all particles and area, stable in the whole beam time

Dielectron Analysis using a Neural Network

Dielectron Analysis using a Neural Network

Dielectron Analysis using a Neural Network

Near Future

Next step is the upgrade to SIS 100 (8 GeV/u) (2018):

- High intensity beams and high rates
- Detectors need to cope with these requirements
- LIP is involved in simulation studies to include two new detectors:
 - Forward detector
 - Multi-wire Detector Chamber

Summary

- Interesting physics at low energy.
- LIP group highly involved in detector responsibilities and in physics analysis.
- The Collaboration recognises LIP group as an important and reliable partner.

HADES LIP Group

Alberto Blanco PI

Paula Bordalo Researcher

Paulo Fonte Researcher

Sérgio Ramos Reseacher

Celso Franco Post-Doc

Luís Lopes Technician

Luís Silva Post-Doc