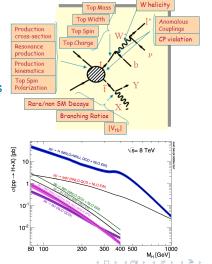
Phenomenologic Studies @ the LHC

António Onofre

LIP/UM, onofre@fisica.uminho.pt

LIP 2016, Fevereiro 19 Universidade do Minho, Campus de Gualtar, Braga


António Onofre

Main Goals

Top quark and Higgs Phenomenology @ LHC

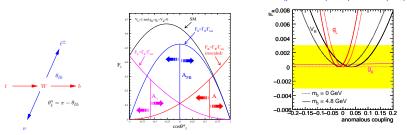
- *tt* production
 - $\sigma_{t\bar{t}}$
 - Mass
 - Charge
 - W polarization and the $t \rightarrow bW$ decay
 - Anomalous couplings
 - tt
 <u>t</u>

 Spin correlations
 - tt
 resonances
- Single top production
 - Cross section
 - FCNC
- Higgs physics
 - tīH
 - $pp \rightarrow H + X$


1- The Wtb vertex and global fitter TopFit

The Wtb vertex is determined by a global fit to several observables:

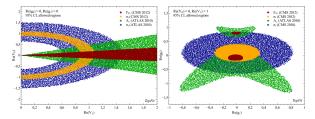
- Several, theoretically equivalent, observables studied for tt
 production at LHC (not all explored yet @ LHC)
- Single top cross section usefull (sensitive to *V*_{tb} and anomalous couplings)
- Indirect limits from $b \rightarrow s\gamma$ available (not used)
- All couplings are allowed to vary freely in TopFit, i.e. the global fitter developed by the team to find the allowed regions for the anomalous couplings for a given wanted CL


(個) (日) (日) (日)

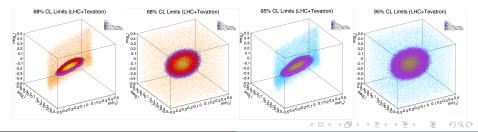
tt Production: Anomalous couplings at the Wtb vertex

New angular asymmetries and helicity ratios were introduced to probe anomalous couplings:

 $A_t = \frac{N(\cos\theta_\ell^* > t) - N(\cos\theta_\ell^* < t)}{N(\cos\theta_\ell^* > t) + N(\cos\theta_\ell^* < t)}$


(NLO) $A_{\rm FB}$ =-0.2269, A_+ =0.5429, A_- =-0.8402, $\rho_{\rm L}$ =-0.8402 and $\rho_{\rm R}$ =-0.8402

 $V_{\rm R}$, $g_{\rm L}$ and $g_{\rm R}$ change $F_{\rm R}$, $F_{\rm L}$ and F_0 ($\rho_{\rm R} = F_{\rm R}/F_0$, $\rho_{\rm L} = F_{\rm L}/F_0$)


▲ 臣 ▶ ▲ 臣 ▶ 二 臣 .

Constraints from LHC and Tevatron data

Phys.Rev. D90 (2014) 11, 113007

in preparation (all anomalous couplings with both real and imaginary parts)

António Onofre

2-NLO Monte Carlo Generator MEtop

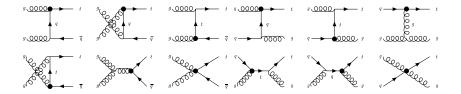
Ennhanced Branching Ratios for several models:

 $BR(t \rightarrow FCNC)$ in several models:

	SM	•		FC 2HDM		
$t \rightarrow q\gamma$	$\sim 10^{-14}$	$\sim 10^{-9}$	$\sim 10^{-6}$	$\sim 10^{-9}$	$\sim 10^{-6}$	$\sim 10^{-6}$
$t \rightarrow qZ$	$\sim 10^{-14}$	$\sim 10^{-4}$	$\sim 10^{-7}$	$\sim 10^{-10}$	$\sim 10^{-6}$	$\sim 10^{-5}$
$t \rightarrow qg$	$\sim 10^{-12}$	$\sim 10^{-7}$	$\sim 10^{-4}$	$\sim 10^{-5}$	$\sim 10^{-5}$	$\sim 10^{-4}$

[Acta Phys. Polon. B 35 (2004) 2695]

 Effects of FCNC may manifest at top quark production and decay and indicates the existence of New Physics beyond the Standard Model


2-NLO Monte Carlo Generator MEtop

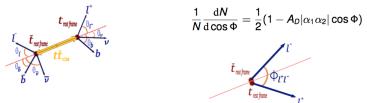
What was the contribution from the project?

 A new NLO generator is now available (METop) to the community and it has been used by the LHC Collaborations

• It includes @ NLO single top + jet production $(g \ g \rightarrow \overline{q} \ t + X, \ g \ q \rightarrow g \ t + X)$

(many contributions from Strong and EW sectors)

• Eur.Phys.J. C72 (2012) 2222


António Onofre Phenomenologic Studies @ the LHC

3-Spin Correlations in $t\bar{t}$ Events

Although produced unpolarised, the *t* spins are correlated in $t\bar{t}$ events Two spin correl. parameters studied using angular distributions: *A* and A_D

$$\mathbf{A} = \frac{\sigma(\mathbf{t}_{\uparrow}\bar{\mathbf{t}}_{\uparrow}) + \sigma(\mathbf{t}_{\downarrow}\bar{\mathbf{t}}_{\downarrow}) - \sigma(\mathbf{t}_{\uparrow}\bar{\mathbf{t}}_{\downarrow}) - \sigma(\mathbf{t}_{\downarrow}\bar{\mathbf{t}}_{\uparrow})}{\sigma(\mathbf{t}_{\uparrow}\bar{\mathbf{t}}_{\uparrow}) + \sigma(\mathbf{t}_{\downarrow}\bar{\mathbf{t}}_{\downarrow}) + \sigma(\mathbf{t}_{\uparrow}\bar{\mathbf{t}}_{\downarrow}) + \sigma(\mathbf{t}_{\downarrow}\bar{\mathbf{t}}_{\downarrow})}$$

 $\frac{1}{N}\frac{\mathrm{d}^2N}{\mathrm{d}\cos\theta_1\mathrm{d}\cos\theta_2} = \frac{1}{4}(1-A|\alpha_1\alpha_2|\cos\theta_1\cos\theta_2), \quad \alpha_i = \text{spin analysing power of } i$

$$\begin{split} \textit{A}^{\rm SM} &= 0.326^{+0.003}_{-0.002}(\mu)^{+0.013}_{-0.001}(\textit{PDF}), \quad \textit{A}^{\rm SM}_{\rm D} = -0.237^{+0.005}_{-0.007}(\mu)^{+0.000}_{-0.006}(\textit{PDF}) \\ \textit{A}^{\rm SM} &= 0.422, \quad \textit{A}^{\rm SM}_{\rm D} = -0.290 \quad (\textit{m}_{\rm t\bar{t}} < 550 \; \text{GeV}) \end{split}$$

Nucl.Phys.B690 (2004) 81, Eur.Phys.J.C44 (2005) s13-s33

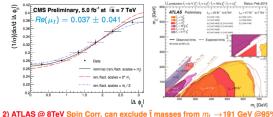
3-Spin Correlations in $t\bar{t}$ Events

Talk @ ICNFP2015, Greece, on behalf of ATLAS+CMS

 Top Spin Correlations are a powerful test of the SM: t; top guarks are produced unpolarised but their spins are correlated in the SM Different BSM predict different spin correlations, 1) and 2) R.

Measure angular distributions of decay products:

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d[\cos(\theta_i)] d[\cos(\theta_j)]} = \frac{1}{4} [P\alpha_i \cos(\theta_i) + P\alpha_j \cos(\theta_j) + A\alpha_i \alpha_j \cos(\theta_i) \cos(\theta_j)]$$


 $A = \frac{N_{like} - N_{unlike}}{N_{like} + N_{unlike}}$

Spin analyser power of particles:

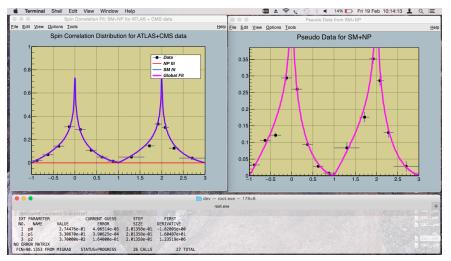
	b	l	d	u
α (NLO)	-0.39	0.998	0.93	-0.31

1) CMS @ 7 TeV Chromo-magnetic anomalous couplings: **CMS PAS TOP-14-005**

ATLAS@7 TeV: PRD 90 112016 (2014) easiest observable, $\Delta \phi_{\ell\ell}$ but there are others. $S = \frac{(|\mathcal{M}|_{\mathrm{RR}}^2 + |\mathcal{M}|_{\mathrm{LL}}^2)_{\mathrm{corr}}}{(|\mathcal{M}|_{\mathrm{RR}}^2 + |\mathcal{M}|_{\mathrm{LL}}^2)_{\mathrm{uncorr}}}$ CMS@7 TeV:

PRL 112 182001 (2014) $A_{\Delta\phi}, A_{c_1c_2}$ with $c_i = cos(\theta_i)$

ATLAS @ 8TeV Spin Corr. can exclude
$$\tilde{t}$$
 masses from $m_t \rightarrow$ 191 GeV @95% CL


ATLAS @ 8 TeV $f_{SM} = 1.20 \pm 0.05(stat) \pm 0.13(sys)$ **CMS** @ 8 TeV $f_{SM} = 0.72 \pm 0.09(stat)^{+0.15}_{-0.12}(sys)$

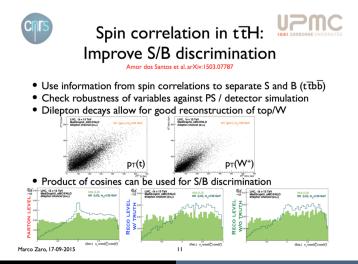
PRL 114 142001 (2015) CMS PAS TOP-13-015

$$\Delta f_{SM}/f_{SM} = 12\%$$

3-Spin Correlations in $t\bar{t}$ Events

New fits of angular distributions from the project very, very, VERY Preliminary

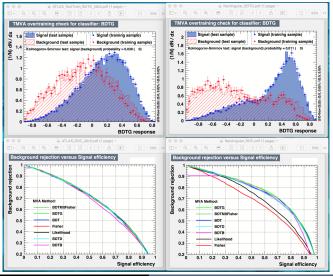
António Onofre Phenomenologic Studies @ the LHC


・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

4-Higgs Physics

Presented by Zaro @ TOP2015


Higgs properties @ the LHC

António Onofre

4-Higgs Physics

Loss of sensitivity @ 13TeV + Angular Dist.

António Onofre

Top Quark workshops

Next workshop TOP2016 @ https:indico.cern.chevent486433overview

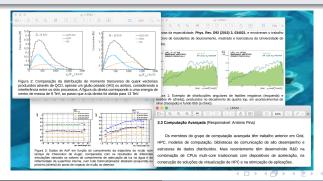
António Onofre

Next Steps and conclusions

 Immediate next steps: focus on global fitters for top quark and Higgs physics (angular distributions)

• (almost) Final thoughts:

- The project has been able to establish a good collaboration between Experimentalists and Theorists
- Several tools have been developed and are available to the LHC community (several others are in the pipeline)
- Undergraduate, Master and PhD students have been trained
-financial issues are strongly limiting the activity


 The activity is beeing extended to other fields (search for new particles is ask Nuno)

at last but not the least....

LIP-Minho

Structure of the LIP-Minho Group (26 members):

- A- Experimental Particle Physics Group with Accelerators
 - A1 Measurements (Antonio Onofre)
 - A2 Searches (Nuno Castro)
- B- Experimental Particle Physics Group without Accelerators, Astroparticles
 - B1 Auger (Raul Sarmento)
- C- Advanced Computing Group (Antonio Pina)
- D- Outreach, Advanced Education and Technology Transfer

António Onofre