WW cross section measurement & MET Performance

Lara Lloret Iglesias LIP- Lisboa

Motivation

- Vector boson pair production is **one of the most important electroweak processes** at hadron colliders.
- WW production has larger cross section than WZ and ZZ production.
- The standard model (SM) description of electroweak interactions can be tested through precision measurements of the WW production cross section at hadron colliders.
- Irreducible background for the $H \rightarrow WW$ process
- xs already published at 8 TeV = 69.9 +/- 0.7 for 5.3 fb-1

to be compared with the theoretical value $59.8^{+2.2\%}_{-1.9\%}$ pb

PLB 721 (2013) 190-211

WW xs measurement

Production mode:

Experimental signature:

- Two high pT leptons
- Transverse missing ET
- Low hard jet activity

Selection

WW → IInunu(I=e,mu) signature

Two high pT leptons with opposite charge and tight requirements ISO/ID

Large missing transverse energy (MET)

Reject events consistent with Z decay

Veto events in Z mass window for same flavour final state

Reduce top quark decay background

Top veto based on b-tagging and soft muon tagging for low \textbf{p}_{T} jets

Reduce other diboson (WZ/ZZ) background

Veto events with a third lepton passing tight requirements

MET cuts to reduce further Drell Yan contribution

Selection

Different-flavor	Same-flavor
< 0	< 0
> 20	> 20
	> 0.88 (0-jet) > 0.84 (1-jet)
-	> 15
> 30	> 45
> 12	> 12
veto applied	veto applied
	Different-flavor < 0 > 20 - - > 30 > 12 veto applied

The events are analyzed in four exclusive categories:

- Separated between different- and same-flavor leptons

- Separated between events with 0 or 1 reconstructed jet with E_{τ} > 30 GeV and $|\eta|$ < 4.7.

Data

- We use the complete 2012 dataset corresponding to an integrated luminosity of 19.4 fb-1
- The data we use were collected with the following trigger suite:

Dataset	Trigger name	Description
DoubleElectron	HLT_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL_	$p_T > 17,8$ GeV
	Ele8_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL_v*	
DoubleMu	HLT_Mu17_Mu8_v*	$p_T > 17, 8 \text{GeV}$
	HLT_Mu17_TkMu8_v*	$p_T > 17,8 \text{ GeV}$
MuEG	HLT_Mu17_Ele8_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL_v*	$p_T > 17, 8 \text{GeV}$
	HLT_Mu8_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL_v*	$p_T > 8,17 \text{ GeV}$
SingleEle	HLT_Ele27_WP80_v*	$p_T > 27 \text{ GeV}$
SingleMu	HLT_lsoMu24_eta2p1_v*	$p_T > 24 \text{ GeV}$

Backgrounds

- WZ, ZZ, Wγ, VVV are **taken from simulation**
- ttbar and tW \rightarrow data-driven estimation from control region
- W+jets estimated from data (with a looser selection) using a (eta, pT) dependent fake rate measured with a QCD control sample
- The DY background normalization is measured in a data control sample using the so-called **in/out method** wrt the Z mass peak
- Wy* is taken from MC and normalized to a control sample with three reconstructed leptons
- The $H \rightarrow WW$ is **taken from MC** and considered as a **background**

Relative Uncertainties

Source	Uncertainty (%)
Statistical uncertainty	1.5
Lepton efficiency	3.8
Lepton momentum scale	0.5
Jet energy scale	1.7
$E_{\rm T}^{\rm miss}$ resolution	0.7
tt+tW normalization	2.2
W+jets normalization	1.3
$Z/\gamma^* \rightarrow \ell^+ \ell^-$ normalization	0.6
$Z/\gamma^* \rightarrow \tau^+ \tau^-$ normalization	n 0.2
$W\gamma$ normalization	0.3
$W\gamma^*$ normalization	0.4
VV normalization	3.0
$H \rightarrow W^+W^-$ normalization	0.8
Jet counting theory model	4.3
PDFs	1.2
MC statistical uncertainty	0.9
Integrated luminosity	2.6
Total uncertainty	7.9

Results

Results

Result

$$\sigma_{W^+W^-} = \frac{N_{data} - N_{bkg}}{\mathcal{L} \cdot \epsilon \cdot (3 \cdot \mathcal{B}(W \to \ell \overline{\nu}))^2}'$$

Dragoss	0-jet category		1-jet category	
r tocess	Different-flavor	Same-flavor	Different-flavor	Same-flavor
$qq \rightarrow W^+W^-$	3516 ± 271	1390 ± 109	1113 ± 137	386 ± 49
$gg \rightarrow W^+W^-$	162 ± 50	91 ± 28	62 ± 19	27 ± 9
W ⁺ W ⁻	3678 ± 276	1481 ± 113	1174 ± 139	413 ± 50
ZZ + WZ	84 ± 10	89 ± 11	86 ± 4	42 ± 2
VVV	33 ± 17	17 ± 9	28 ± 14	14 ± 7
Top-quark	522 ± 83	248 ± 26	1398 ± 156	562 ± 128
$Z/\gamma^* \rightarrow \ell^+ \ell^-$	38 ± 4	141 ± 63	136 ± 14	65 ± 33
$W\gamma^*$	54 ± 22	12 ± 5	18 ± 8	3 ± 2
Wγ	54 ± 20	20 ± 8	36 ± 14	9 ± 6
W + jets(e)	189 ± 68	46 ± 17	114 ± 41	16 ± 6
$W + jets(\mu)$	81 ± 40	19 ± 9	63 ± 30	17 ± 8
Higgs	125 ± 25	53 ± 11	75 ± 22	22 ± 7
Total bkg.	1179 ± 123	643 ± 73	1954 ± 168	749 ± 133
W^+W^- + Total bkg.	4857 ± 302	2124 ± 134	3128 ± 217	1162 ± 142
Data	4847	2233	3114	1198

 $\sigma_{W^+W^-} = 60.1 \pm 0.9 \text{ (stat.)} \pm 3.2 \text{ (exp.)} \pm 3.1 \text{ (th.)} \pm 1.6 \text{ (lum.) pb.}$

to be compared with the theore $59.8^{+2.2\%}_{-1.9\%}$ pb

A bit of history ...

Analysis in 0-jet category	WW cross section measurement (pb)
Previous publication	69.9 ± 7.0
Full 19.4 fb ⁻¹ data sample	67.4 ± 5.6
Simulated signal ptWW reweighted	65.3 ± 5.6
Switched MC from MADGRAPH to POWHEG	63.3 ± 5.6
New result using DF and SF together	61.3 ± 5.4
Statistical combination of DF and SF	60.1 ± 5.2

MET performance

- In Z → II and photon events we can probe the detector response to the global hadronic system and measure the scale and resolution of Missing Et
- Comparing the transverse momentum of the well measured and well understood vector boson to that of the hadronic recoil system.

The hadronic recoil can be projected onto the boson axis: parallel $(\mathbf{u}||)$ and perpendicular $(\mathbf{u}\perp)$

Resolution

Conclusions

- We measured the pp \rightarrow WW cross section in the fully leptonic channel.
- We use the complete √ s = 8 TeV data set corresponding to an integrated luminosity of 19.4 fb-1.
- We found σ = 60.2 ± 0.9 (stat.) ± 4.5 (syst.) ± 1.6 (lum.) pb.
 in agreement with the SM prediction at NNLO of 59.84 +2.
 2% -1.9% pb.
- This is the **most precise** pp \rightarrow WW production cross section measurement at $\sqrt{s} = 8 \text{ TeV}$.
- Result already **submitted to EPJC**
- Updated result soon at 13 TeV!

• MET performance studies at 13 TeV to be public soon