The CT-PPS Project and prospects for γγ exclusive production

Jonathan Hollar (LIP Lisbon) 19.02.2016

Introduction

- In a special class of "exclusive" interactions at the LHC, the colliding protons stay intact and are scattered at small angles
 - Tagged gluon-gluon and $\gamma\gamma$ interactions, with $\sqrt{s} >> LEP$
 - Unique opportunity for new electroweak, QCD, and beyond Standard Model physics measurements

CERN European Organization for Nuclear Research

Organisation européenne pour la recherche nucléaire

PRECISION PROTON SPECTROMETER

- The CT-PPS project of the CMS & TOTEM experiments aim to detect the protons in these events using tracking and fast timing detectors
 - Project approved for baseline plan of
 - Installation of new Roman Pots in 2015
 - Staged installation of detectors in 2016
 - Physics operation by 2017

CT-PPS infrastructure

- Forward protons are scattered at small angles
 - Roman Pots housing the detectors must approach the LHC beam to within ~3-4mm

- New Roman Pots already installed before 2015 LHC restart, optimized for high luminosity running
 - Insertion tests successfully conducted throughout 2015
 - No background/vacuum/RF impedance problems observed up to highest luminosities (20σ approach)

CT-PPS detectors

- Timing detectors:
 - Diamond detectors already installed in 2015 for TOTEM upgrade, available for CT-PPS installation June 2016
 - ~90ps resolution/plane, ~50ps resolution from 4 planes
 - Timing upgrades/R&D under study: Ultrafast Silicon (UFSD), Quartz Cherenkov

- Baseline tracking detectors:
 - Radiation-hard, 3D silicon pixels
 - <30µm resolution => recoil mass resolution <1.5%
 - Installation late 2016

Selection of exclusive events

- Detailed physics simulations carried out with up to 50 overlapping interactions per bunch crossing ("pileup") in WW and dijet channels
- Timing selections:
 - Correlations between vertex position in central detector and vertex determined from ToF difference of protons

- Tracking selections:
 - Invariant mass correlations between central system and protons
 - Rapidity correlations between central system and protons

Physics prospects: yy->VV interactions

- Probing $\gamma\gamma$ WW and $\gamma\gamma$ ZZ couplings at the TeV scale
 - Indirect sensitivity to many types of new physics (composite Higgs, warped extra dimensions, heavy V/A resonances etc.) appearing as "anomalous quartic gauge couplings"
 - Expected sensitivity far beyond LHC Run 1
 and LEP/Tevatron searches

LEP (OPAL)

LHC Run 1 (CMS)

CT-PPS projected, 100fb⁻¹

Physics prospects: search for resonances in γγ->γγ

 Recent development - possible hints of an excess in diphoton events at 750GeV from CMS & ATLAS in 2015 data

- A resonance decaying to yy will also be produced in yy collisions
 - 750 GeV is well matched to the CT-PPS proton acceptance

γγ->X(750)->γγ and accelerated CT-PPS program

- Several publications have shown γγ->γγ can be measured in the 750GeV range using only tracking detectors for the protons
 - Backgrounds rejected using invariant mass and rapidity matching, diphoton kinematics
 - Similar conclusions from preliminary simulations with CMS/CT-PPS

JHEP 1502 (2015) 165 arXiv:1512:05751

- Accelerated plan to re-use TOTEM Si strip detectors (meant for low-luminosity running) for this measurement, already from the beginning of 2016 data-taking
 - Detectors are already installed
 - Work to integrate DAQ and software ongoing

Summary

- The CT-PPS project will begin operations in 2016
 - Accelerated schedule aims to have limited tracking detectors in use already from start of 2016 LHC running
 - Goal of studying possible 750 GeV object in γγ collisions
 - Baseline detector with timing and pixel tracking will be installed by mid-late 2016 for the 2017 LHC run
 - Expanded physics program of electroweak/QCD measurements and Beyond Standard Model searches using tagged protons

