Jet trigger algorithms with GPUs for the ATLAS Upgrade

Ademar Delgado^{1,2}, José Silva^{1,3}
A. Gomes^{1,2}, P. Conde^{1,2}, J. Augusto^{1,2}, A. Pina^{1,3}, J. Rufino^{1,3}

¹LIP, Laboratório de Instrumentação e Física Experimental de Partículas
 ²FCUL, Faculdade de Ciências da Universidade de Lisboa
 ³ECUM, Escola de Ciências da Universidade do Minho

19 de Fevereiro de 2016

The Jet trigger challenges at the LHC:

Jet:

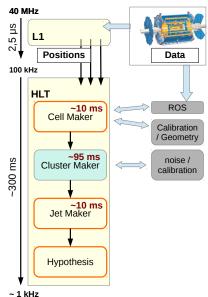
- Collimated spray of particles initiated by quarks or gluons
- Important for QCD studies, SM physics and search for new physics (SUSY,...)

Trigger system:

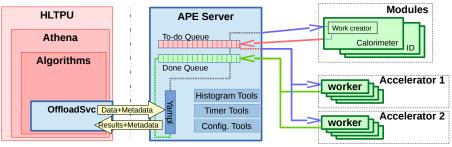
- 40 MHz event rate
- Volume of data/s \sim PB/s
- Trigger systems designed to select interesting physics events, for storage and offline analysis

	Run 2		Run 3
	2015-18	hase-I	2020-22
Centre of mass Energy \sqrt{s} (TeV)	13-14)ha	14
Luminosity $(cm^{-2}s^{-1})$	1×10^{34}	Ī	2×10^{34}
Bunch spacing (ns)	25	LS2	25
Number of interaction/event	~27		~55 - 80
Total Integrated luminosity (fb $^{-1}$)	~ 100		~ 300

ATLAS Jet trigger for Run 3:


Jet energy deposits are aggregated by the reconstruction algorithms and calibrated to provide the jet momentum measurement.

In Run 3:


- Up to 80 collisions per event
- Advanced algorithms needed to better suppress pile-up
- More computation required

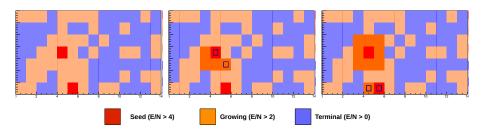
Evaluate the use of GPU's on the HLT

- Demonstrator prototype under implementation
 - LIP's responsibility: calorimeter trigger chains
- Needs re-design of the algorithms: single instruction - multiple data paradigm

Demonstrator architecture:

Client side

- One HLT processing unit per core
- Athena framework
 - Executes chains of algorithms
 - Provides data and monitoring services
 - Caches responses

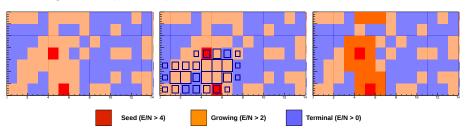

offloading and processing

Server side

- Independent from Athena
- Efficient accelerator resource management
- Can exploit several technologies

Specific modules and services implemented for the calorimeter data/tasks

Topological Clustering algorithm:



Group cells into clusters according to their Energy/Noise level. Cluster Growing:

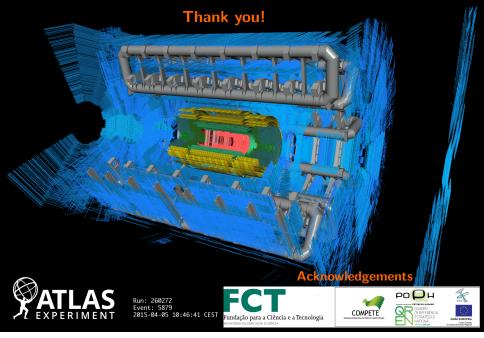
- Each SEED initiates a clusters
- For each SEED (and later GROWING) cell:
 - Find all neighbours (3D) and add them to clusters:
 - \star If a neighbour is a SEED or $\operatorname{GROWING}$ in another cluster \to merge them
 - \bigstar If a neighbour is a $\operatorname{GROWING}$ cells \to add it to next iteration list
- Terminal cells do not propagate the cluster


Topological Automaton Clustering algorithm:

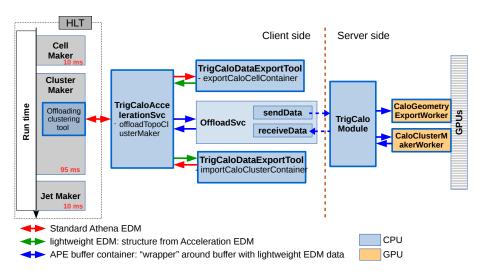
Designed to exploit the parallelism of the GPU

- Based on a Cellular Automaton
 - Propagate of flags on a grid of elements
- Assign unique flag (energy ordered) to each SEED cell
- Process all cells in each iteration (untill no flag changes)
 - Compare flag to all neighbours
 - Get the largest flag
- Implementation:
 - Maximize parallelism: data organized in cell-neighbour pairs
 - \star Only pairs with at least a SEED or GROWING cell
 - Each GPU thread process a pair

Results and next steps



- First results very promising:
 - Clusters energy correctly reconstructed
 - - Expected due to small differences on GPU algorithm


- Processing time (di-jet events):
 - ▶ Cluster Growing CPU \sim 22 ms \rightarrow GPU \sim 8 ms (\sim 2.75X faster)
 - Data conversion overhead \sim 12 ms
 - Optimization ongoing

Next steps

- Cluster Splitting parallelisation just started (Braga)
- Finish optimization and evaluation of the demonstrator prototype
 - ▶ Next 2-3 months
- ATLAS will take a decision on whether to use GPU's for Phase I HLT Upgrade based on these results

Calorimeter demonstrator:

Trigger GPU demonstrator for the Phase I Upgrade:

Trigger farm hardware rolling replacement during shut-down

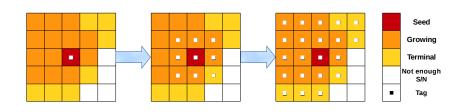
- New architectures need to be evaluated, parallel computing paradigm growing
- General-purpose computing on Graphics Processing Units (GPUs)

GPUs are massive parallel processing architectures

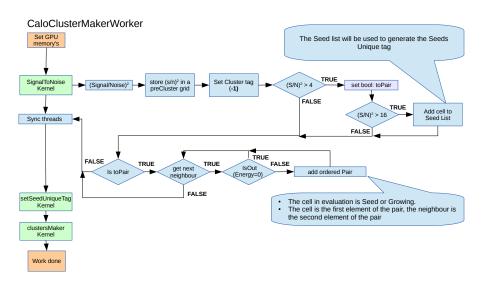
single instruction multiple data

The Trigger GPU demonstrator comprises prototype of HLT algorithms

- Inner Detector tracking: (RAL)
- Calorimeter clustering: (LIP)
- Muon track finding: (Bologna, Rome)

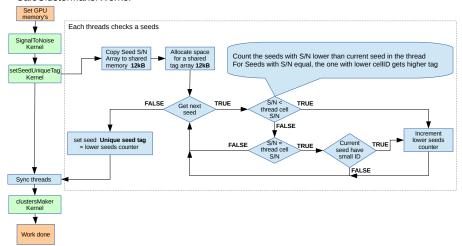

The goal is to assess the potential of GPUs for use in the HLT farm

• Main metric to be the throughput per unit cost

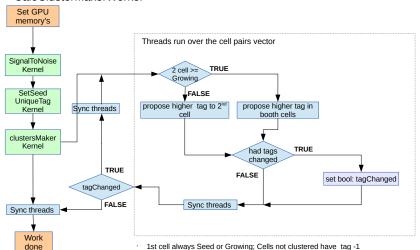

Topological Automaton Clustering:

Based on a Cellular Automaton algorithm

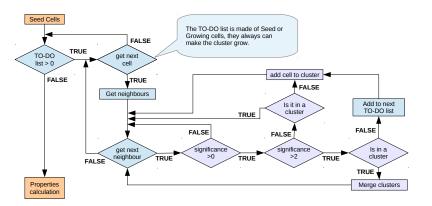
- Cell signal/noise rate
- Fill a vector of cell pairs. (reduces branching due to irregular # neighbour)
 - ► Only SEED or GROWING cells generate pairs. (data reduction)
- Orders the SEEDS (S/N), cluster tag is the SEED position in the list
- Loop all cell pairs proposing the highest tag as new tag till all tags remain unchanged:
 - ▶ If no/same tag proposed: continues.
 - ▶ If has one proposed tag from a SEED/GROWING cell: accept tag.
 - lacktriangle If both cells propose a valid tag: accept the highest S/N tag. (merge clusters)



Topological Cluster alternatives: GPU CellRating


Topological Cluster alternatives: GPU Set seed unique tag

CaloClusterMakerWorker



Flux diagram of TAC:

CaloClusterMakerWorker

Topological Cluster alternatives: CPU Clustering

