

Space Radiation Environment & Effects

24

Marco Pinto

Jornadas do LIP 2016 Universidade do Minho – Braga, 19-21 de Fevereiro

Contents

- Activities
- RADEM
- ECo60-JUICE
- AlphaSat
- Mars Radiation

S P A C E L I P

Activities

Radiation Environments

Detector simulation and design

Component degradation and modelling

The team: Researchers

• Patrícia Gonçalves (coordinator)

2

- Jorge Sampaio
- Luísa Arruda
- Pedro Assis
- Bernardo Tomé

In Space

On the surface of planets

In-Orbit

1 PhD Student

- Marco Pinto
- 2 Master Students
- Pedro Magalhães
- Ana Luísa Casimiro Techinicians
- Miguel Ferreira
- José Carlos Nogueira

JUPITER ICY MOONS EXPLORER

Launch

2022

Next Class-L (Large) ESA Mission

Development

What are the conditions for planet formation and emergence of life?

Emergence of habitable worlds around gas giants.

How does the Solar System work?

24

• Jupiter system as an archetype for gas giants

Cruise

Arrival End of Mission

2030

RADEM

Main Objectives

- Ensure mission safety
- Provide valuable scientific data

Requirements:

- Electron detector
 - Spectral range 300 keV 40 MeV

DD

- Peak Flux 10^9 e/cm2/s
- Proton Detector
 - $\odot~$ Spectral range 5 MeV– 250 MeV
 - Peak Flux 10^9 p/cm2/s
- Particle Separation
 - From Helium to Oxygen
- Dose determination

ESA/ESTEC Contract 1-7560/13/NL/HB EFACEC,LIP,PSI,IDEAS

Patrícia Gonçalves

P&ISD

RADEM – Motivation for DD

RADEM – Directionality Detector First Concept Z

31 directions $\Delta \theta$ =22.5°, $\Delta \varphi$ =36°

Good Spatial Resolution

300 μm Si Sensor
 300 μm Aluminum Absorber

<300 keV e⁻
<6 MeV protons Low energy Resolution</p>
One sensor per direction
Collimator FOV ~7.2^o DD FOV ~62^o

RADEM - Directionality Detector First Concept

24

Geant4

- Detector Geometry
- Electron source spectra by the JOSE model in several locations of the Jovian System

RADEM - Directionality Detector Current Version

Kapt

23

Copper

Sensors moved to a detection plane

- Rectangular sensors with different sizes due to the inclination
- 28 directions

505 µm

3 blind sensors \bullet

Single 505 µm Kapton absorber

Different energy thresholds

4 cm

ion	Zenith Angle	0 deg	22.5 deg	45 deg	67.5 deg
	Electrons	0.3 MeV	0.3 MeV	0.35 MeV	0.5 MeV
	Protons	7 MeV	7 MeV	8.5 MeV	12.5 MeV

RADEM - Directionality Detector Current Version

20

Zenital angle (wrt vertical) Results are worst for steeper angles!

0.4

Deposited Energy (MeV

RADEM - Directionality Detector Radiation Analysis

Geant4 Model

Copper

Aluminum

Doses computed for the entire mission

RADEM - Directionality Detector Direction Response

0.1-2 MeV

of counts

200

100

Polar Angle (

Eco60-JUICE

Summary

- Validation of ⁶⁰Co irradation tests for EEE components flown in the Jovian System
- Currently under development at E-CRLAB
- 5 components
 - BJT
 - MOSFET
 - AMPOP
 - Flash-Memory
 - Shunt Voltage

- 3 Phases
 - 1. Selection of EEE Components
 - 2. Preparation of Radiation Tests
 - 3. Radiation Test Campaign

Eco60-JUICE Preparation of Irradiation Tests @ E-CRLAB at LIP

Measuring Units

Control Board

20

Test Board

Eco60-JUICE Radiation Test Campaign

3 tests:

High dose rate Electron irradiation (2 energies – 10 and 15 MeV)

High dose rate ⁶⁰Co irradation (1.1732 MeV) Low dose rate ⁶⁰Co irradation (1.1732 MeV)

10 kRad steps up to 100 kRad ---- Annealing

ESA/ESTEC CONTRACT 3-14025/13 AlphaSat The AEEF: AlphaSat Environment and Effects Facility

- The AlphaSat was launched to GEO in 25th July 2013 carried the AEFF (TDP8).
- MFS + CTTB make AEEF-TDP8.
- Installed on X-panel of the AlphaSat

CTTB: Component Technology Test Bed

ESA/ESTEC CONTRACT 3-14025/13/NL/AK with EFACEC and LIP

- MC simulation of MFS was implemented with the description for :
 - Detector's geometry
 - Materials
 - Calibrations and front-end electronics response

MFS Ground Test Data Analysis

Tested at PSI (2010) at the Proton Irradiation Facility (PIF) and with the mono-chromatic chamber using ⁹⁰Sr to provide a mono-energetic electron beam.

- \checkmark verification and calibration of the equipment.
- ✓ PFM design approval. Simulation results in very good agreement with test beam data

MFS – Flux Spectra Reconstruction

The Single Value Deconvolution (SVD) technique applied to calculate p and e^{-} differential fluxes $f_{p,e}(E)$

SEP Nov 2013/Fev 2014

Mars Radiation Environment

Pedro Magalhães:

Martian Radiation Environment and its effects on the Martian surface and underground

<u>Ana Luísa Casimiro:</u> Space Radiation Environment effects on manned missions to Mars

Outline

LIP Space Radiation Environment & Effects Activity is consolidated (ongoing for more than 10 years)

24

4 ongoing projects:

- RADEM
- ECo60-JUICE
- MFS
- CTTB (Just starting)

Other work: Mars Radiation Environment (dMEREM)

More oportunities exist

