Quantum control & Open Quantum Systems

Sagar Silva Pratapsi Café com Fisica, Out 2025

-1-Motivation

Classical half-adder using trapped-ion quantum bits: Toward energy-efficient computation

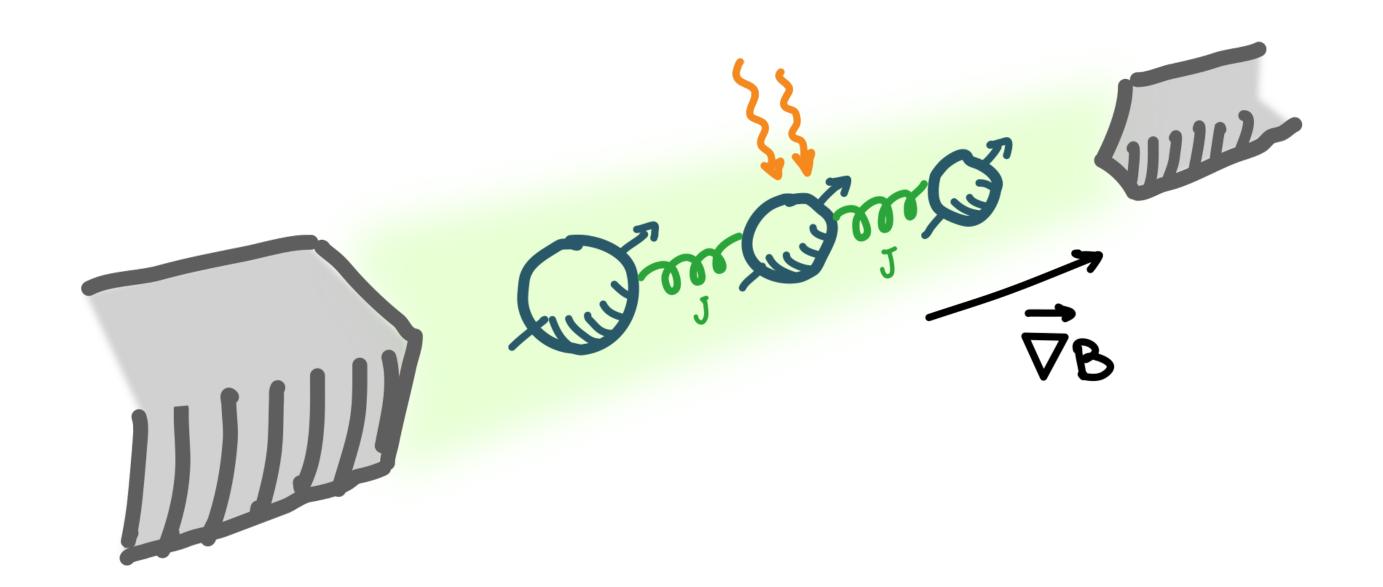
Cite as: Appl. Phys. Lett. **123**, 154003 (2023); doi: 10.1063/5.0176719 Submitted: 15 September 2023 · Accepted: 20 September 2023 · Published Online: 11 October 2023

Sagar Silva Pratapsi,^{1,2,a)} (i) Patrick H. Huber,^{3,a)} Patrick Barthel,³ Sougato Bose,⁴ Christof Wunderlich,^{3,a)} and Yasser Omar^{1,5,6,a)}

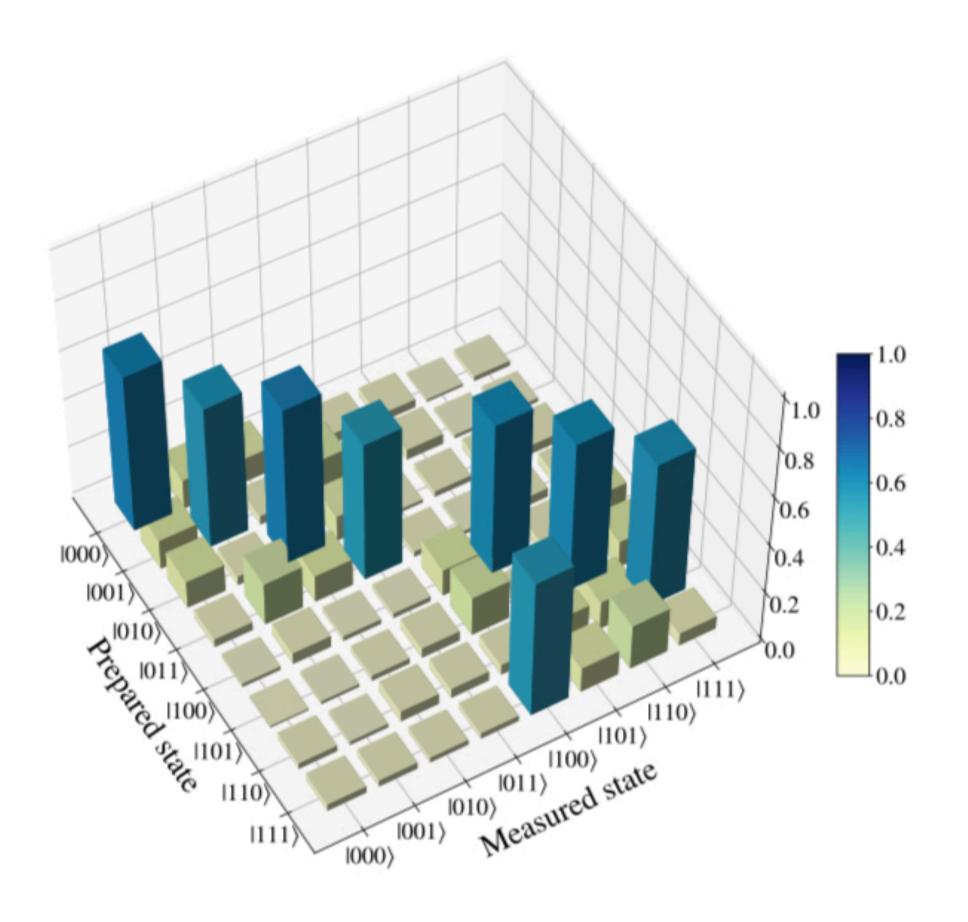
Landauer's principle

Irreversible bit operation \Rightarrow energy dissipation

$$E \ge k_B T \ln 2$$

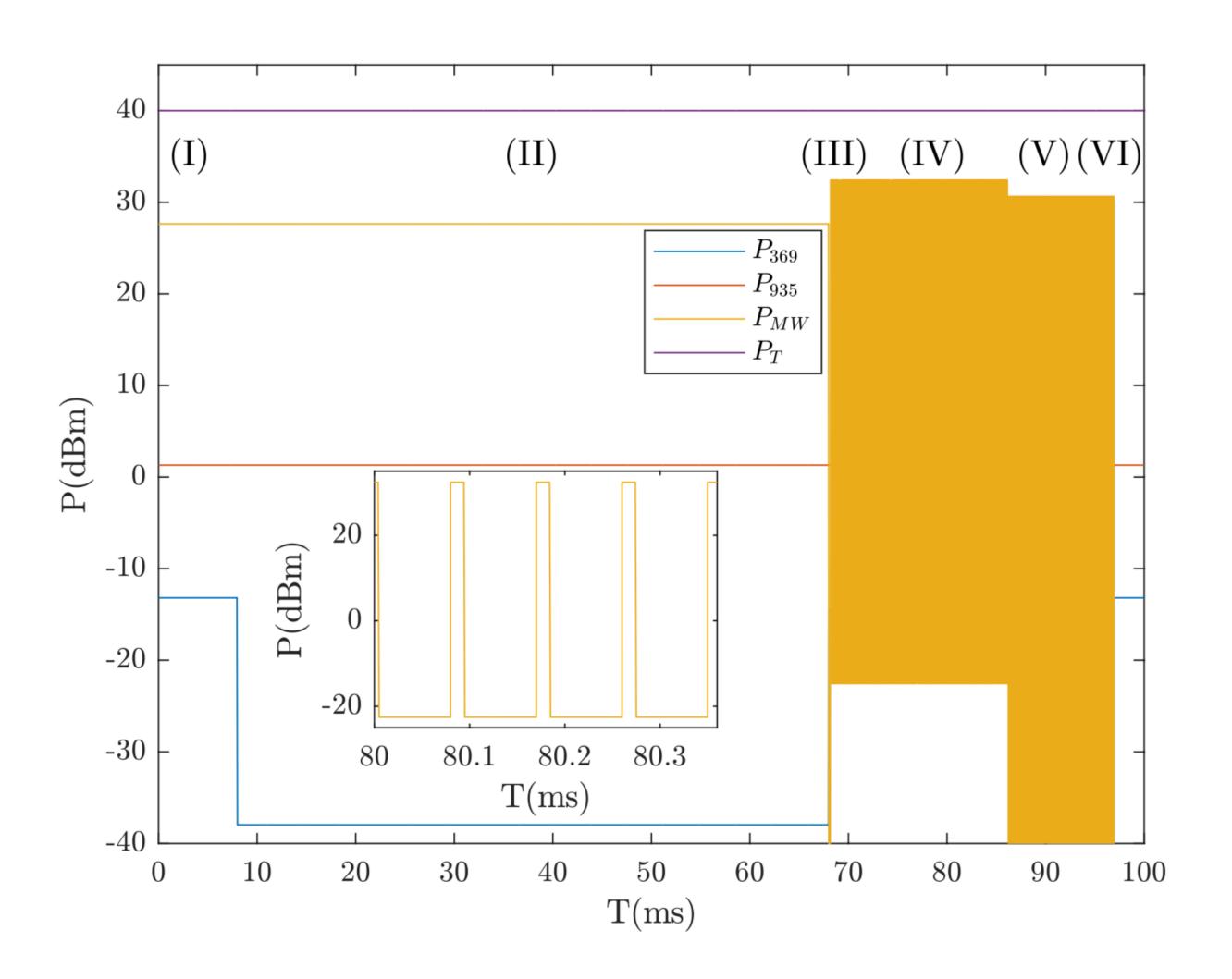


$$H \approx \frac{\hbar J}{2} \left(Z_1 Z_2 + Z_2 Z_3 \right) + \frac{\hbar \delta}{2} Z_2 + \frac{\hbar \Omega}{2} X_2$$



Half-Adder classical fidelity: 60.6% Equivalent two-qubit fidelity: 95.5%

Operation	Laser 369 nm	Laser 935 nm	Microwave			
			Pulse	Dyn. decoupling		Total
			i disc	# π -pulses	Cost	
I. Doppler c.	380 nJ	11 μJ	4.6 mJ			4.6 mJ
II. Sideband c.	10 nJ	81 µJ	$35\mathrm{mJ}$			35 mJ
III. State prep.	7 nJ	$0.3\mu J$				$0.3\mu J$
NOT			8.8 µJ			
IV. Toffoli			9.2 nJ	3×200	1.1 mJ	1.1 mJ
V. CNOT			8.8 μJ	2×120	0.44 mJ	0.44 mJ
Half-Adder			$8.8\mu J$	840	1.5 mJ	1.5 mJ
VI. Readout	140 nJ	4μJ				4.2 μJ



—2— Limitations of Quantum Control

Limitations of Quantum Control

PHYSICAL REVIEW RESEARCH 6, 023296 (2024)

Competition of decoherence and quantum speed limits for quantum-gate fidelity in the Jaynes-Cummings model

Sagar Silva Pratapsi , 1,2,* Lorenzo Buffoni , 3,† and Stefano Gherardini 4,5,6,‡

¹Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal

²Instituto de Telecomunicações, 1049-001 Lisbon, Portugal

³Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy

⁴CNR-INO, Area Science Park, Basovizza, 34149 Trieste, Italy

⁵LENS, University of Florence, 50019 Sesto Fiorentino, Italy

⁶ICTP, Strada Costiera 11, 34151 Trieste, Italy

Quantum Speed Limits

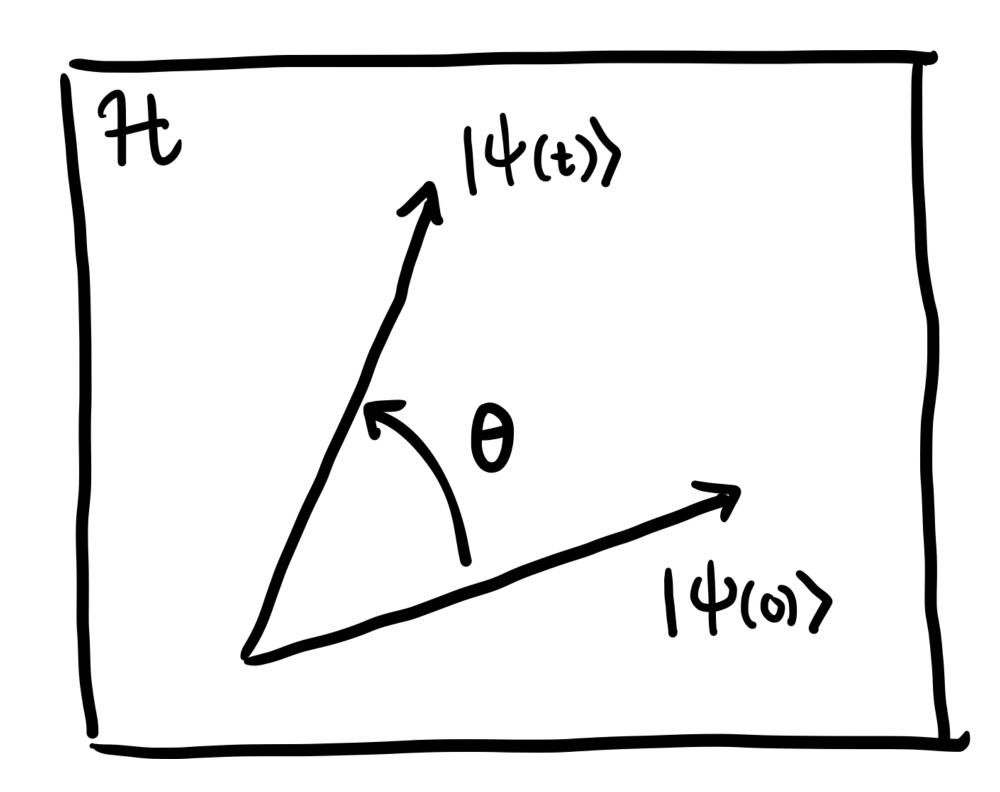
• Mandelstam and Tamm:

$$\Delta H \Delta t \geq \hbar \theta$$

• Margolus and Levitin:

$$\langle H - E_0 \rangle \Delta t \geq \hbar \theta$$

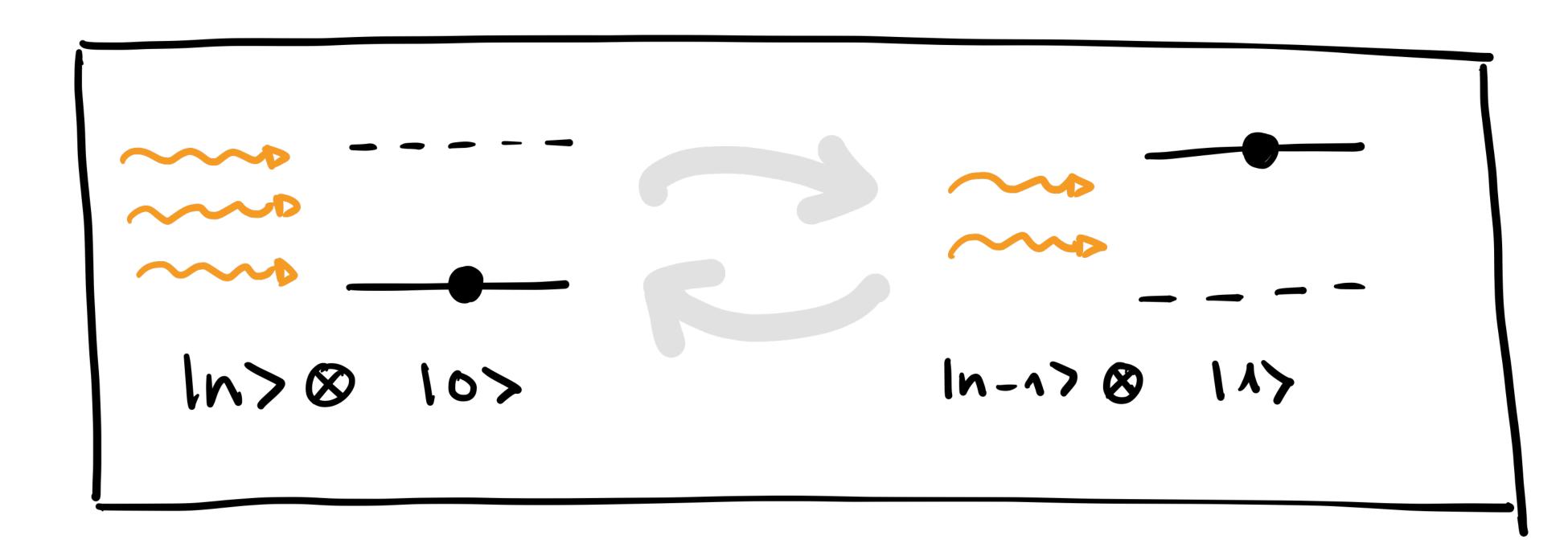
Fast operations need more energy



Limitations of Quantum Control

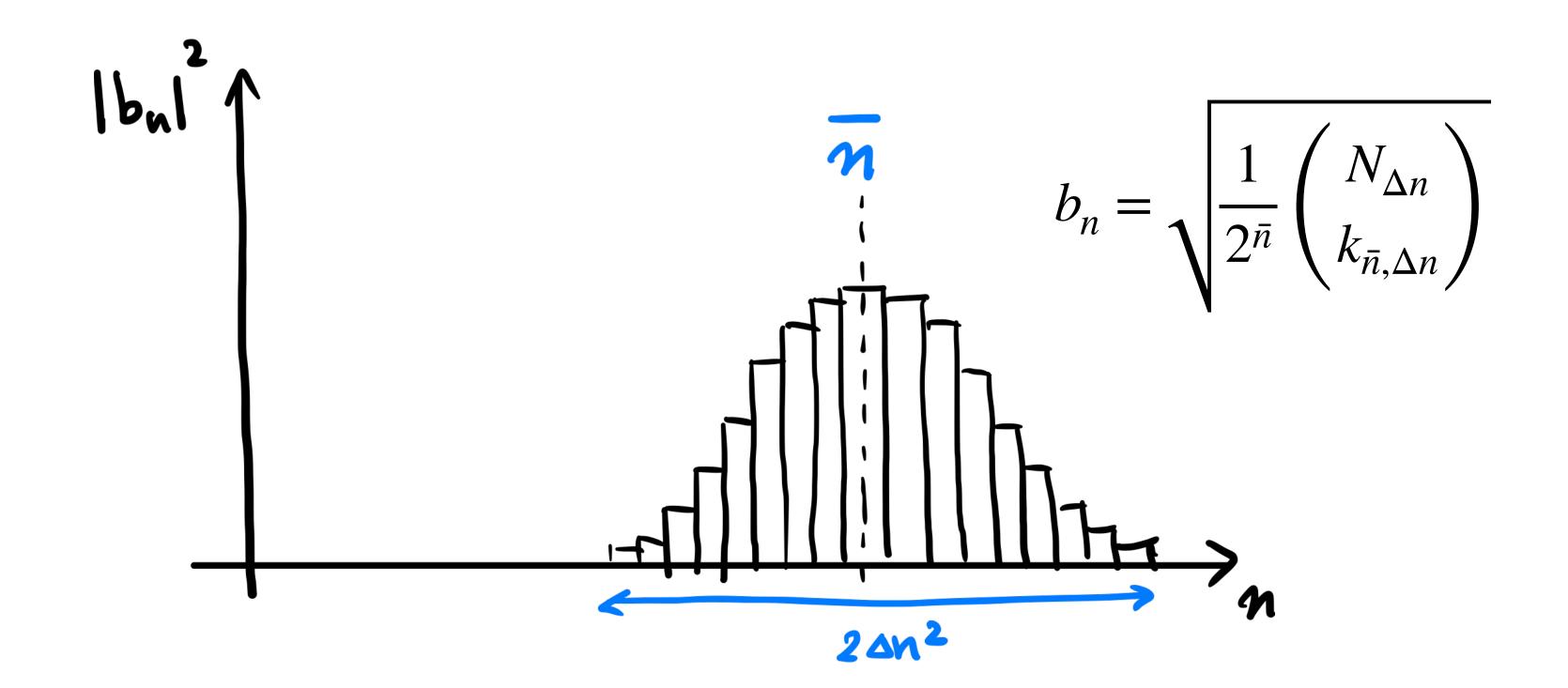
- Cavity system: a QHO drive and logical qubit
- Interacting via the Jaynes-Cummings (JC) Hamiltonian

$$H = i\hbar g \left(b \mathcal{E}^{\dagger} - b^{\dagger} \mathcal{E} \right)$$



Energy and Fidelity in Driven QS

• As in Quantum Speed Limits, we also want to control $\langle H \rangle$ and ΔH , so we pick a binomial distribution state for the drive



Limitations of Quantum Control

Proposition 1

•
$$\rho_t = \text{tr}_{\text{drive}} |\Psi(t)\rangle \langle \Psi(t)|$$

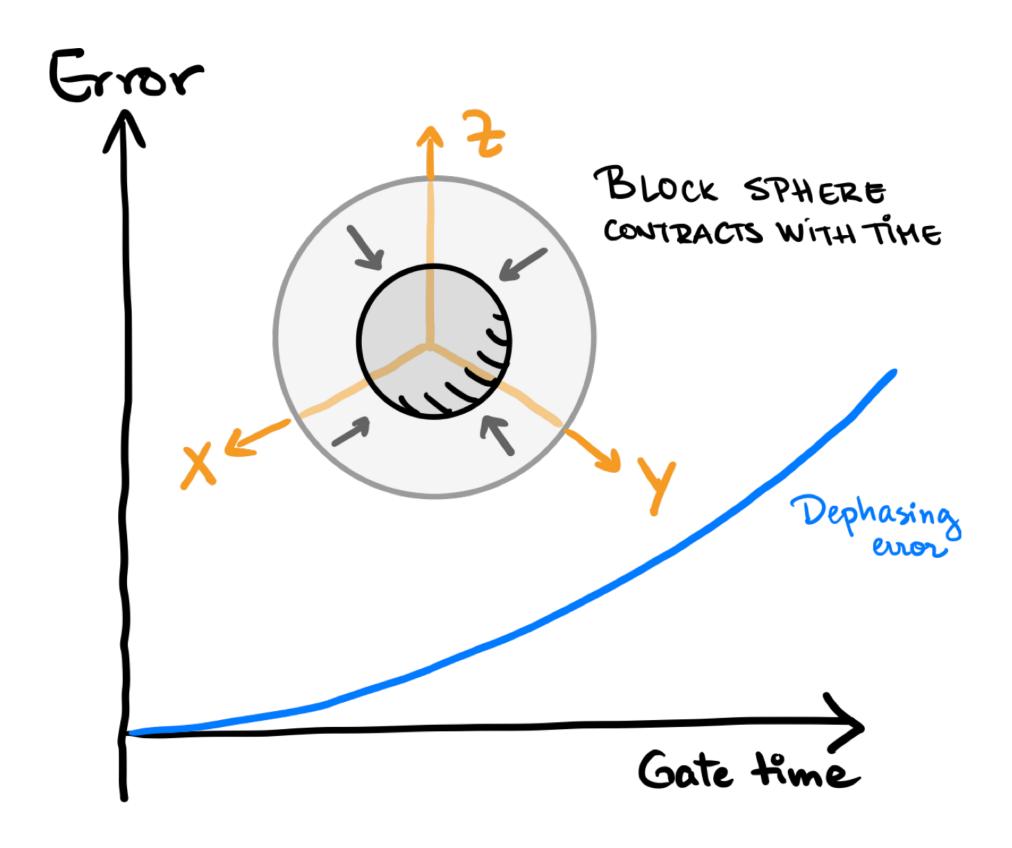
We can quantify the error by the purity

$$\epsilon_t = 1 - \operatorname{tr}(\rho_t^2)$$

• The average error grows as

$$\bar{\epsilon}_t \sim \frac{g^2 s}{6} t^2 + \frac{\sin\left(g\sqrt{\bar{n}}t\right)^2}{6s\bar{n}}$$

and
$$s = \Delta n^2 / \bar{n}$$



Energy and Fidelity in Driven QS

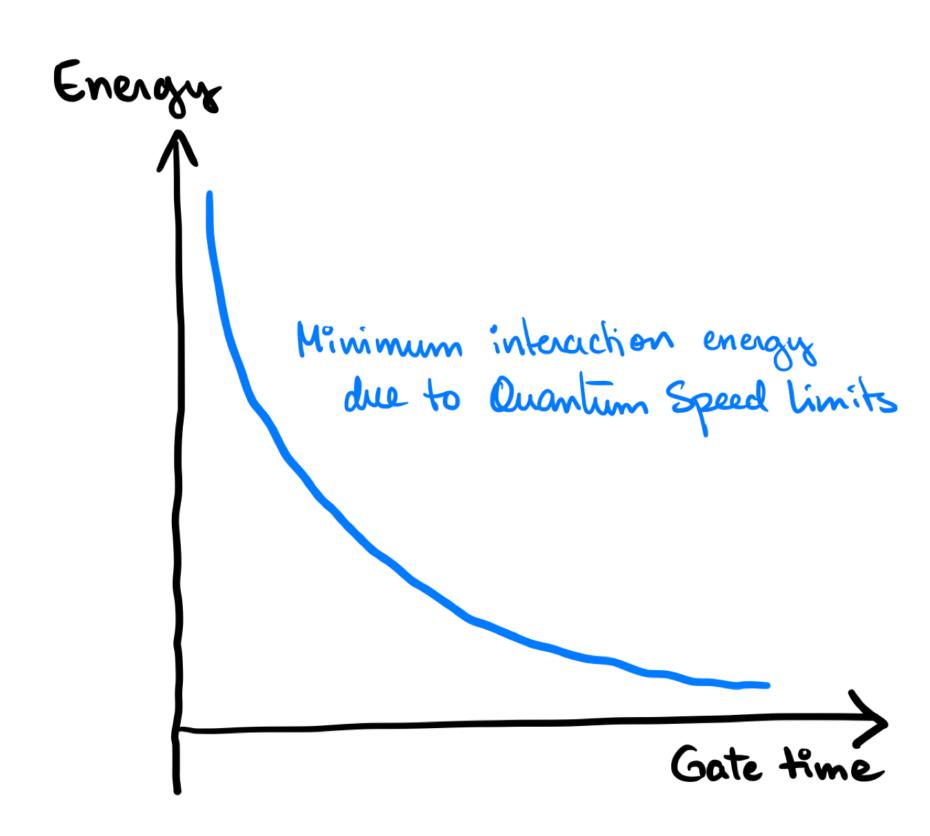
Proposition 2

- Now, suppose we want to rotate the qubit by θ in its Hilbert space
- In the JC case, have

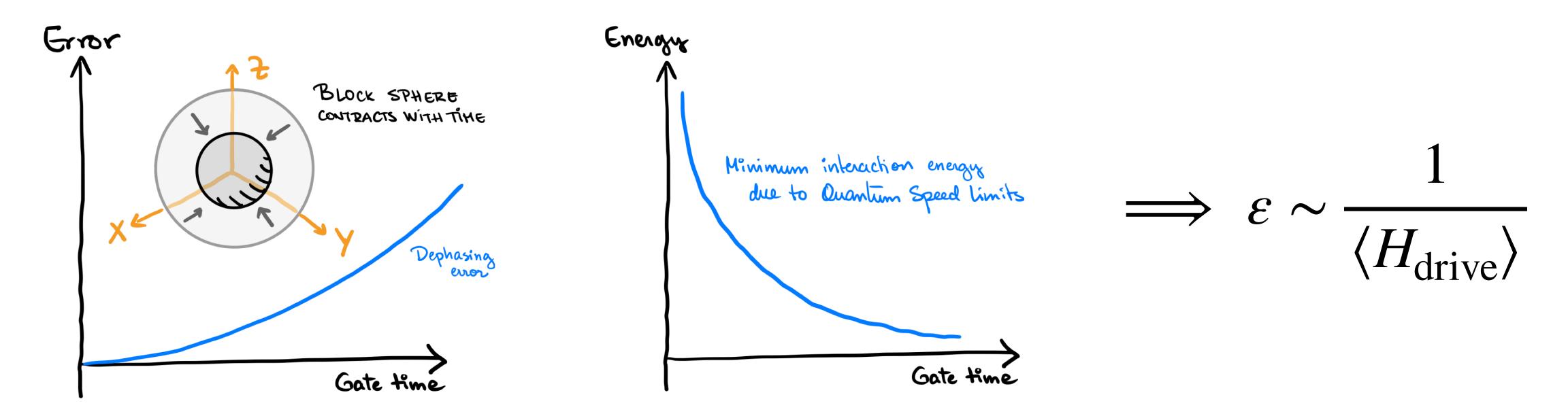
$$\Delta H \approx \langle H \rangle \sim \hbar g \sqrt{\bar{n}}$$
,

The QSLs imply that

$$\Delta t_{\rm gate} \gtrsim \frac{\theta}{g\sqrt{\bar{n}}}.$$

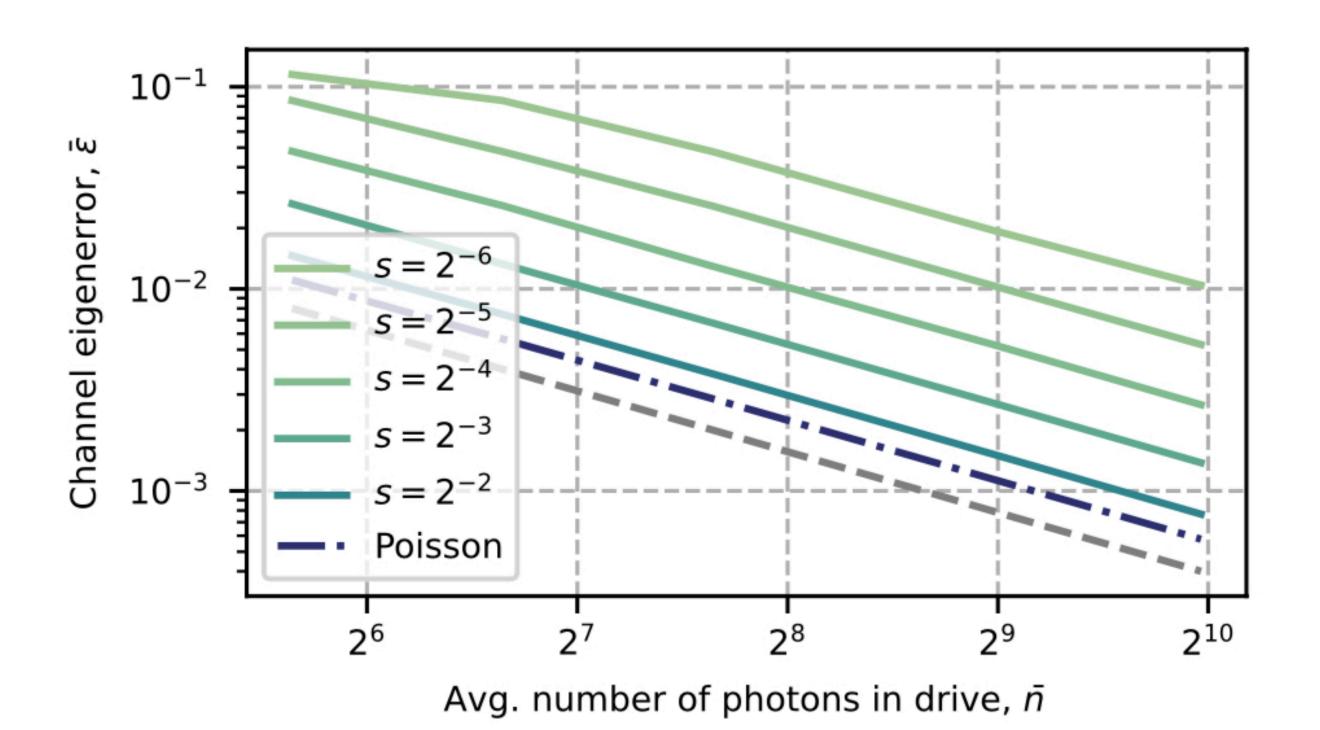


Energy and Fidelity in Driven QS



- Therefore, the energy-fidelity trade-off is seen as a balance between
 - 1. Depolarising-like noise that grows with time; and
 - 2. Minimum gate time due to a Quantum Speed Limit

Limitations of Quantum Control



Energy and Fidelity in Driven QS

Driven quantum systems may suffer from a minimal energy requirement

 $\varepsilon \gtrsim 1/E$

We connected this bound to Quantum Speed Limits (QSLs).

VOLUME 89, NUMBER 21

PHYSICAL REVIEW LETTERS

18 NOVEMBER 2002

Minimum Energy Requirements for Quantum Computation

Julio Gea-Banacloche*

Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701 (Received 1 August 2002; published 4 November 2002)

VOLUME 89, NUMBER 5

PHYSICAL REVIEW LETTERS

29 JULY 2002

Conservative Quantum Computing

Masanao Ozawa

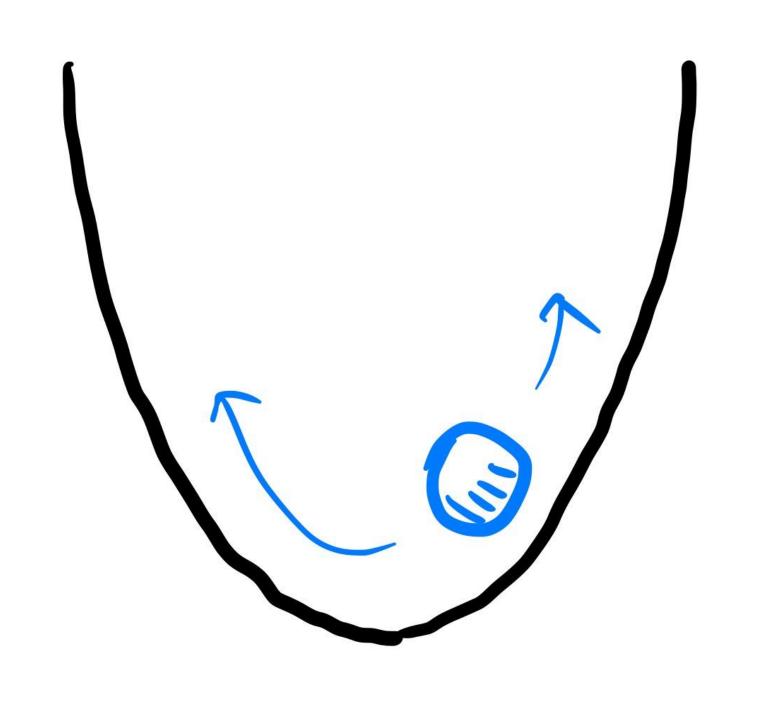
Graduate School of Information Sciences, Tôhoku University, Aoba-ku, Sendai 980-8579, Japan Center for Photonic Communication and ComputingDepartment of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208 (Received 8 October 2001; published 16 July 2002)

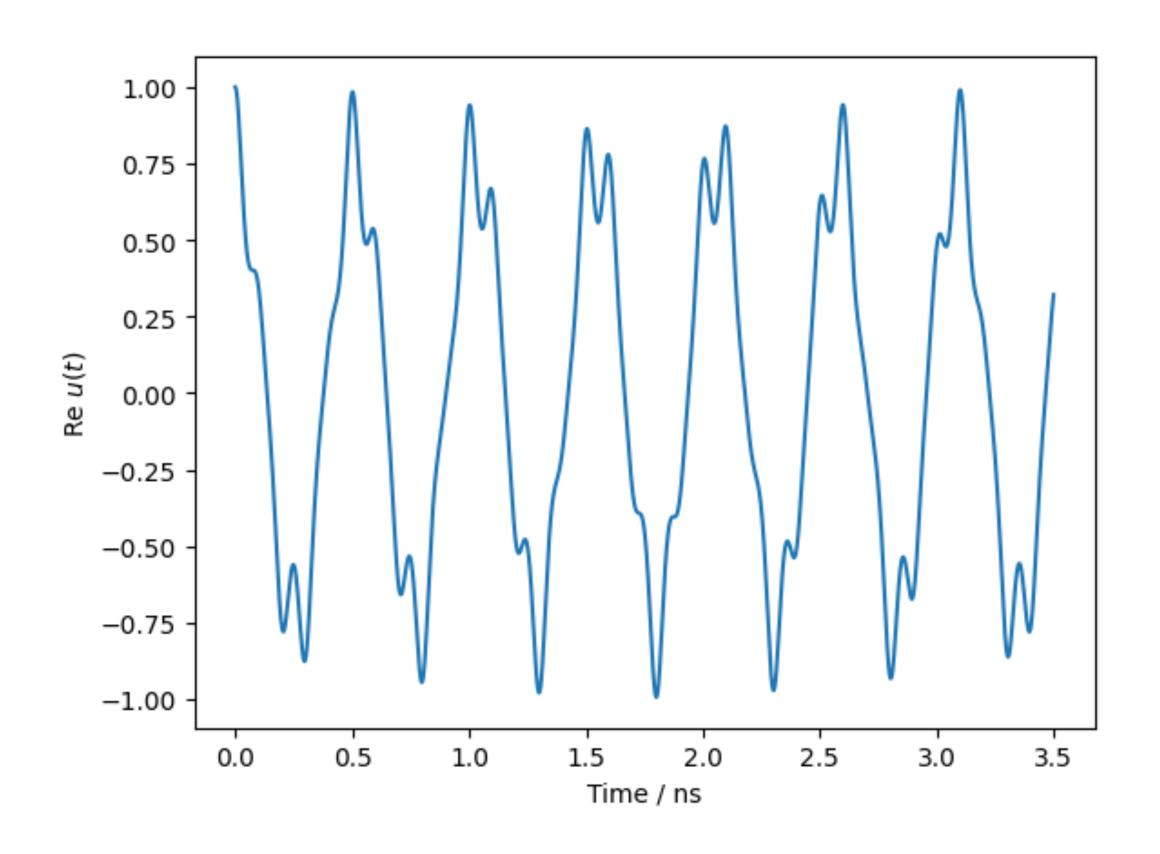
On the classical character of control fields in quantum information processing

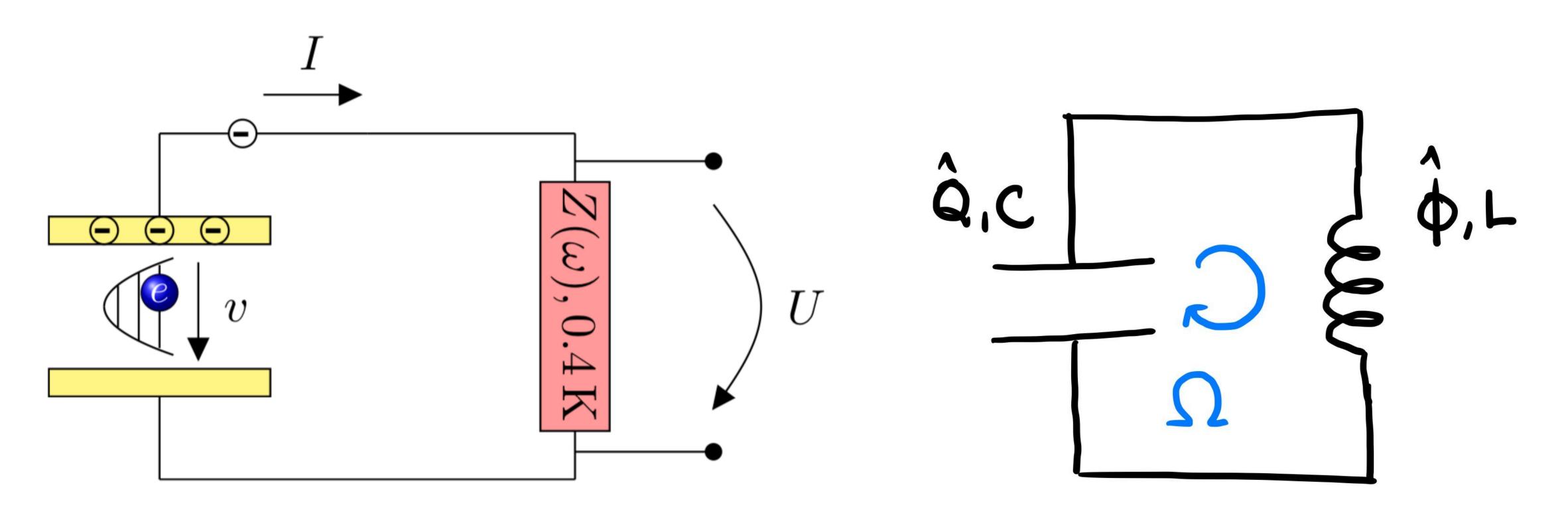
S.J. van Enk¹ and H.J. Kimble²

¹Bell Labs, Lucent Technologies, Room 2C-401
600-700 Mountain Ave, Murray Hill NJ 07974

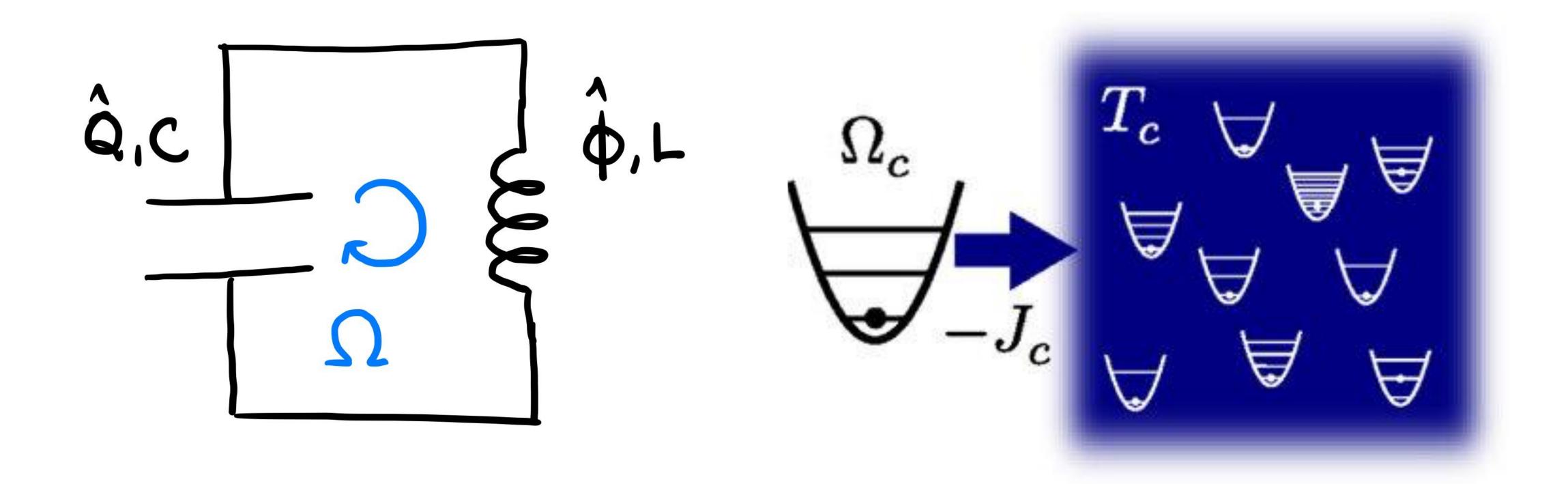
²Norman Bridge Laboratory of Physics 12-33
California Institute of Technology, Pasadena CA 91125







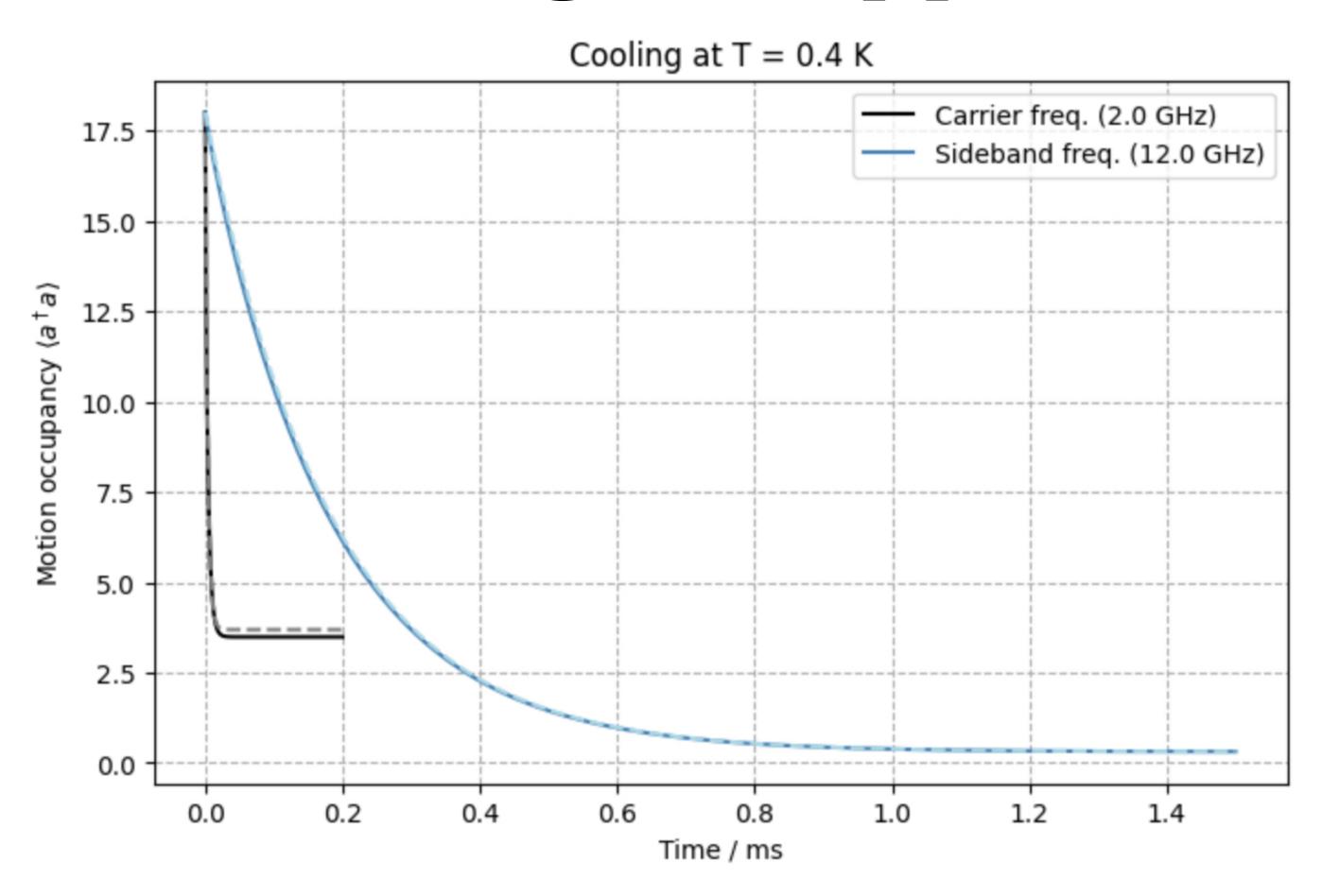
$$H' \approx ig(\Omega) \left(\hat{a} \hat{a}_{\phi}^{\dagger} - \hat{a}^{\dagger} \hat{a}_{\phi} \right)$$



$$\langle a_{\varphi}^{\dagger} a_{\varphi} \rangle = \bar{n}(\Omega) \equiv \frac{1}{e^{\hbar \Omega/k_B T} - 1} \approx \frac{k_B I}{\hbar \Omega}$$

Interaction picture

$$\frac{d}{dt} \begin{bmatrix} \hat{a} \\ \hat{a}_{\phi} \end{bmatrix} = \begin{bmatrix} 0 & -g \\ g & -\kappa/2 \end{bmatrix} \begin{bmatrix} \hat{a} \\ \hat{a}_{\phi} \end{bmatrix} + \begin{bmatrix} 0 \\ \sqrt{\kappa} \hat{b} \end{bmatrix}$$
The male naise



Other things

Otherthings

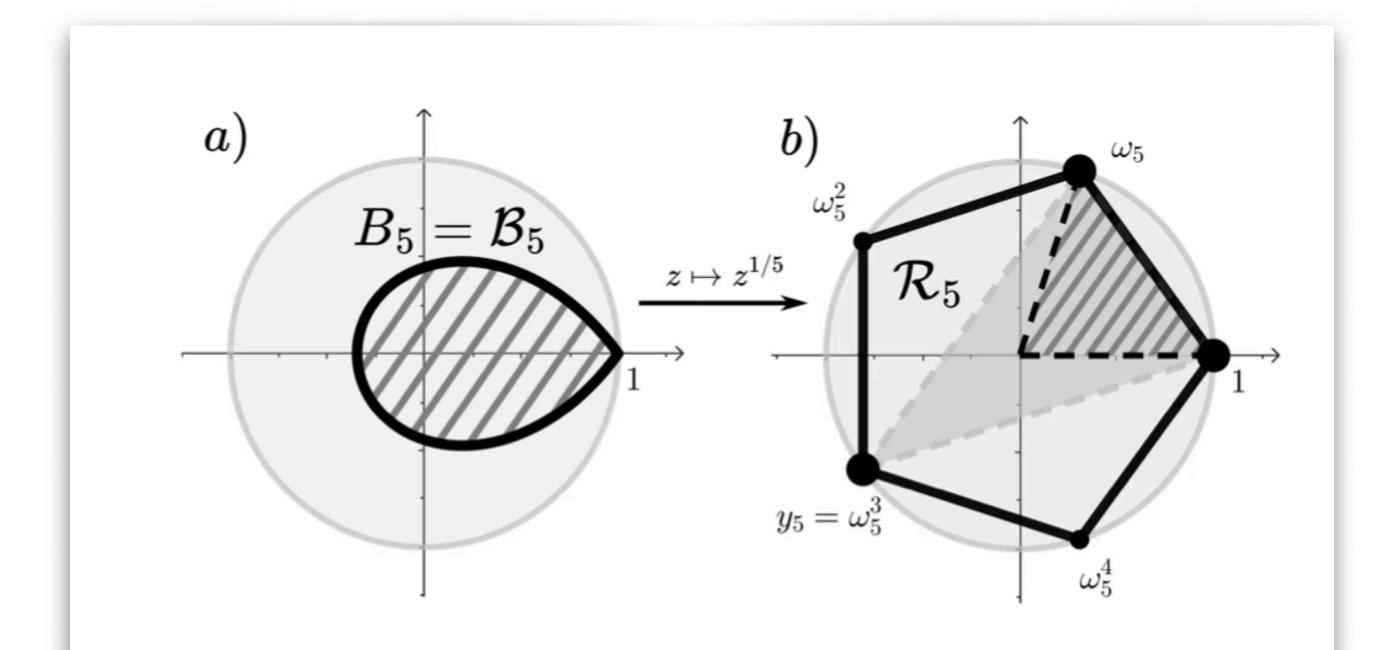
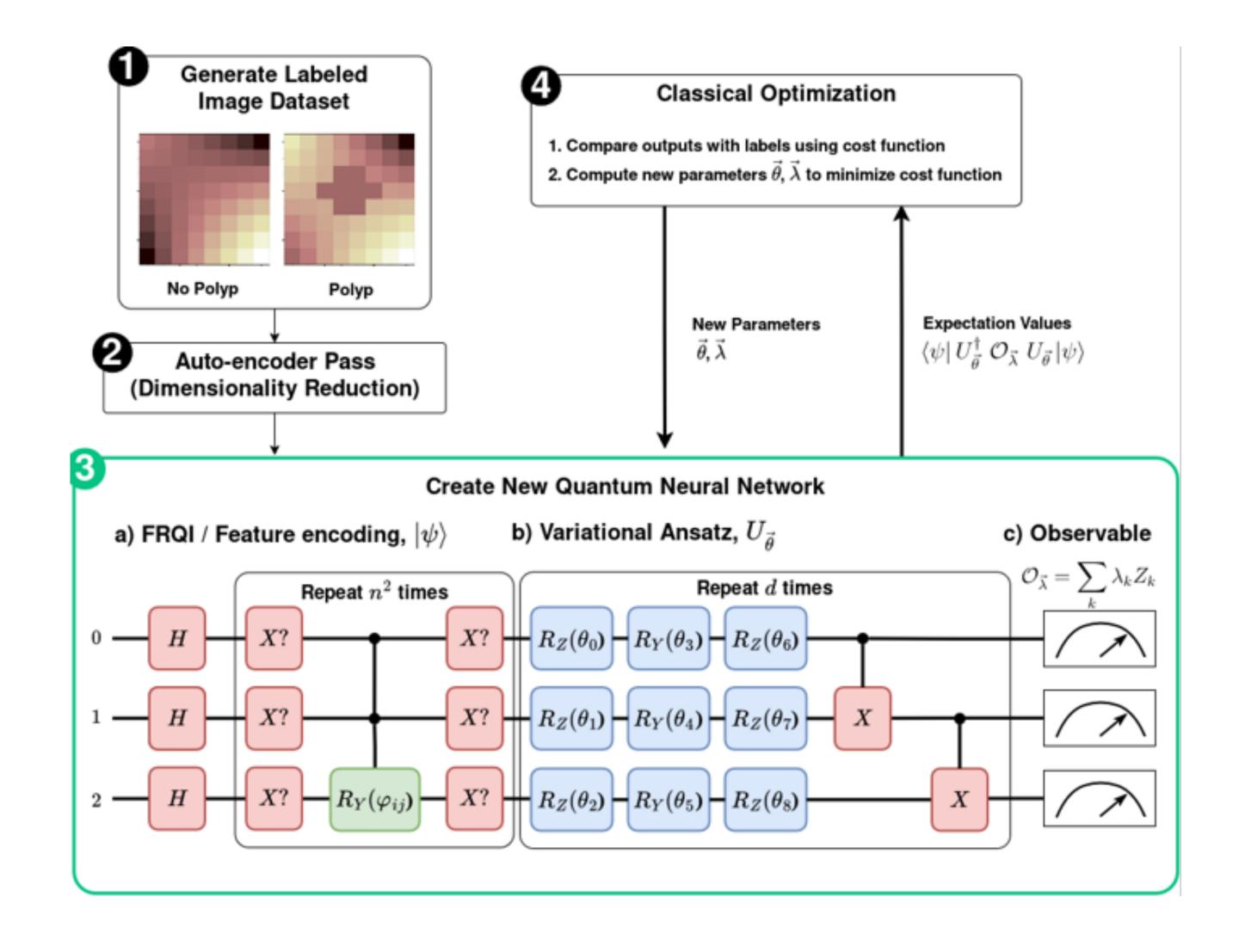


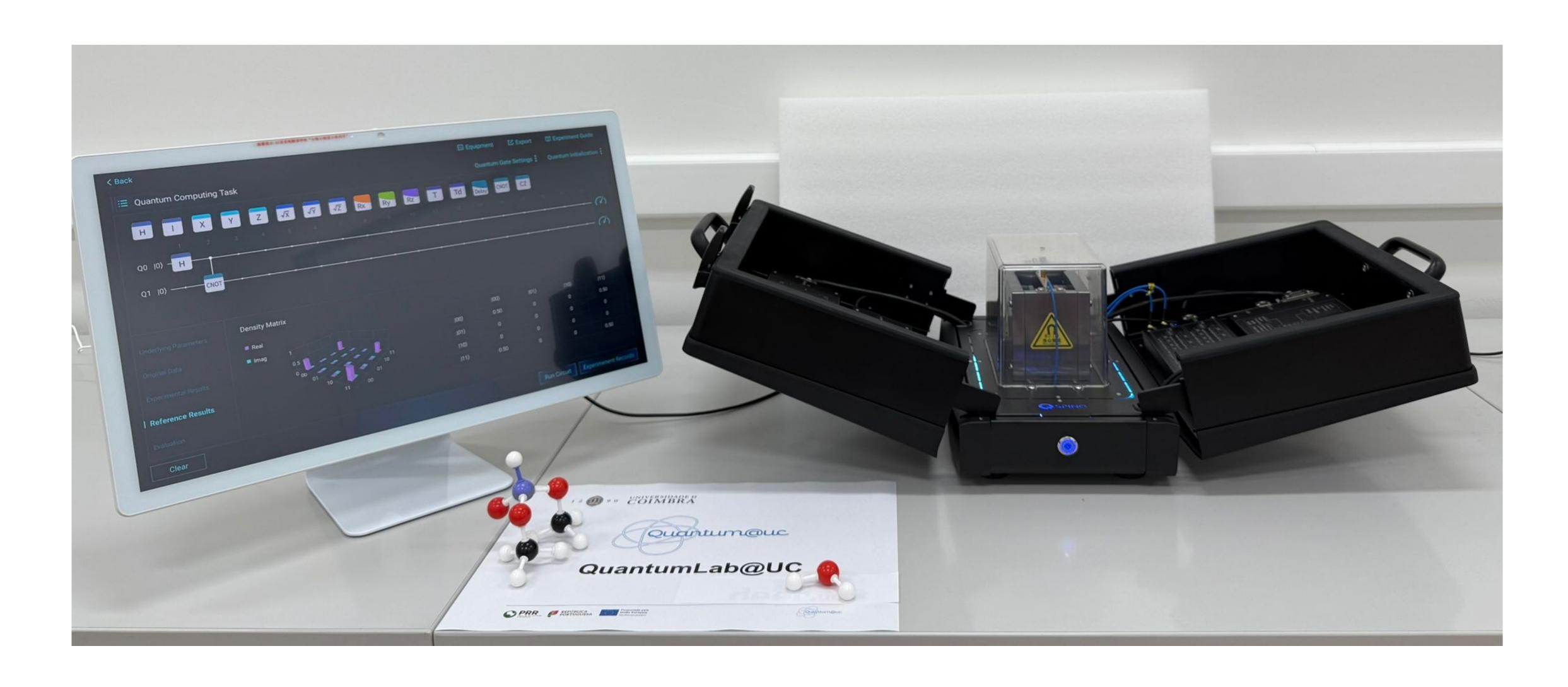
FIG. 1. Characterization of n-th order Bargmann invariants, illustrated here for n=5, with the complex unit circle as reference. a) The range of values that pure Bargmann invariants

$$\operatorname{Tr}(\rho_1 \cdots \rho_n)$$

Otherthings



Other things



Bottomline