

High-energy gamma/hadron discrimination for SWGO

Lucio Gibilisco Ruben Conceição, Pedro Costa, Mário Pimenta, Bernardo Tomé

Lisbon, September 19, 2025

1.

LCm

Quantifying azimuthal asymmetries in the shower footprint

Conceição et al., JCAP10(2022)086

 C_k quantifies the azimuthal asymmetries of the shower footprint!

Conceição et al., JCAP10(2022)086

Conceição et al., JCAP10(2022)086

Conceição et al., JCAP10(2022)086

 $100 \,\text{TeV} \le E_{\text{sim}} < 160 \,\text{TeV}, \ FF = 12.5 \,\%$

- (a) LCm computed using signal from all particles
- (b) LCm computed excluding signal from muons

The correlation between LCm and the number of muons holds true when computing LCm without using the signal of muons!

LCm - The output so far

Conceição et al., *Gamma/hadron*discrimination at high energies through
the azimuthal fluctuations of air shower
particle distributions at the ground,
JCAP10(2022)086

Conceição et al., *The gamma/*hadron discriminator LCm in realistic
air shower array experiments,
Eur.Phys.J.C.83,932(2023)

Bakalová et al., *Azimuthal fluctuations* and number of muons in muondepleted proton air showers at PeV energies, PhysRevD.111.083036

2.

 $P_{
m tail}^{lpha}$

Counting signal outliers

Conceição et al., Phys. Rev. D 110, 023033

Rings centred in the shower axis.

Each ring is 10 m wide and contains n active stations, each with signal S_{i^*} Stations with muons are typically in the upper tail of the ring's signal distribution.

-2

log₁₀(S/VEM)

0.5

For each station, $P_{\mathrm{tail},i}$ is defined as:

$$P_{\text{tail},i} = C_{r,i}$$

The sum of the $P_{\text{tail},i}$ of all stations placed at a distance from the shower core larger than 200 m gives the event variable:

$$P_{\text{tail}}^{\alpha} = \sum_{i}^{n} (P_{\text{tail},i})^{\alpha}$$

$P^{lpha}_{ m tail}$ - Counting signal outliers

Conceição et al., Phys. Rev. D 110, 023033

$P^{lpha}_{ m tail}$ - Counting signal outliers

Conceição et al., Phys. Rev. D 110, 023033

Conceição et al., Phys. Rev. D 110, 023033

 $P_{\mathrm{tail,D}}$

 $P_{
m tail}^lpha$ needs to be corrected for the shower core position. $P_{
m tail,D}$ is $P_{
m tail}^lpha$ normalised to a reference value.

Conceição et al., Phys. Rev. D 110, 023033

Conceição et al., Phys. Rev. D 110, 023033

... and after the correction

Conceição et al., Phys. Rev. D 110, 023033

The effect of the $P_{\rm tail,D}$ correction – showers with $0~{\rm m} < D_{\rm core} < 660~{\rm m}$

Conclusions

LCm

- Gamma/hadron discrimination variable
 based on the quantification of the azimuthal
 fluctuations of the shower footprint
- Sensitive to the hadronic activity of the shower
- Grants a discrimination power comparable to that of the number of muons at energies starting from 100 TeV, without the need for muon detectors
- Space left for optimisation

$P_{\mathrm{tail}}^{\alpha}$

- Gamma/hadron discrimination and mass composition variable based on the count of stations with unusually large signal
- $\begin{tabular}{ll} \bullet & \textbf{Able to reconstruct the number of muons} \\ & \textbf{with} & < 10\,\% & \textbf{resolution at energies} \\ & \textbf{starting from} & 100\,TeV, \ \text{granting a similar} \\ & \text{discrimination and composition power} \\ \end{tabular}$
- Space left for optimisation

Thanks!

Any questions?

You can find me at gibilisc@lip.pt

