

P. Assis, <u>R. Conceição</u>, M. Ferreira, L. Lopes, L. Mendes, G. Neves, J. C. Nogueira

GAP2024-066

Auger collaboration meeting, Malargüe, November 11th 2024

MARTA

Muon Array with RPCs for Tagging Air showers

P. Assis, et al. Eur. Phys. J. C 78 (2018) 4, 333

- Place Resistive Plate Chambers
 (RPCs) below the water
 Cherenkov tank (WCD) to directly
 detect the shower muon
 component
 - ♦ 4 RPCs
 - \Rightarrow RPCs dimension 1.2 \times 1.5 m²
 - ♦ 8 × 8 grid pads

Offline simulation

2

EAS particles energy spectrum

Novel strategies being exploited to access for the first time the energy spectrum of the shower e.m. and muon components

Machine Learning WCD analysis + Muon Production Depth

Use ideas developed in SWGO to reconstruct the muon direction analysing the WCD PMTs signal time trace + RPC hit with ML algorithms

Combine with position extract from arrival delay to the shower front (MPD) to access kinematical delay term, i.e. muon energy spectrum

Analysis of MARTA (WCD+RPC) +SSD data

Shower particles are crossing multiple detectors that respond differently to particle type and energy

See Milton Sunday's talk

3

MARTA

Muon Array with RPCs for Tagging Air showers

P. Assis, et al. Eur. Phys. J. C 78 (2018) 4, 333

- Place Resistive Plate Chambers below the water Cherenkov tank to directly detect the shower muon component
- First station fully commissioned and taking data (Dec 23)
- \diamond Due to the COVID pandemics the RPC were in the field without gas for ~ 2 years!

The Peter Mazur SD-MARTA station

- Trigger to the RPCs is given by the WCD
- ♦ Two RPCs were placed in an overlap position so that efficiency measurements were possible

MARTA's first data acquisition

[Electronics, HV, gas]							
57	49	41	33	25	17	9	1
58	50	42	34	26	18	10	2
59	51	43	35	27	19	11	3
60	52	44	36	28	20	12	4
61	53	45	37	29	21	13	5
62	54	46	38	30	22	14	6
63	55	47	39	31	23	15	7
64	56	48	40	32	24	16	8

Approximately 18.5 hours of acquisitionSuggestion of a RPC misalignment

Correct for RPCs relative misalignment

Real Data - Models Comparison

- Use a simple MC code to look for potential misalignments between RPC1 and RPC3
- \diamond Inject muons according to $\cos^{lpha} heta$ and collect *triggered* pads
 - Necessary to account for RPCs vertical separation
 - \Rightarrow Best fit $(\Delta x, \Delta y) = (3.4 \pm 0.1, -0.2 \pm 0.1)$ cm

RPC pad efficiency calculation

$$\varepsilon_{\rm n} = \frac{N_{\rm efficient}}{\sum_{S_{\rm pad}} N_{\rm trigger} \cdot \varepsilon_{S_{\rm pad}}}$$

- \diamond Agreement between data and simulation RPC pads distribution depends on muon injection distribution (best agreement for $\alpha\approx 1.5$)
- ♦ Efficiency calculation is done accounting for pad geometric efficiency

Efficiency stability

- \diamond RPC's HV adjusted to cope with temperature and pressure variations and maintain E/N stable
- ♦ The variation of efficiency RPC1 can be explained by potential problem with its temperature sensor

MARTA overall efficiency

- Global efficiency compatible with LAB measurements
- \diamond Efficiency variations at the level of $\sim 3\,\%$

Summary

 \diamond First MARTA station commissioned and has been shown to have a stable operation efficiency ($\sim 3~\%$)

Analysis of shower events with MARTA are currently being done

 Small detector interventions will be done during this meeting to make the apparatus more stable and allow for a continuous data acquisition

Acknowledgements

Backup slides

Single vs. Multi-pad efficiency calculation

$$\varepsilon_{\rm n} = \frac{N_{\rm efficient}}{N_{\rm trigger} \cdot \varepsilon_{67}}$$

$$\varepsilon_{\rm n} = \frac{N_{\rm efficient}}{\sum_{S_{\rm pad}} N_{\rm trigger} \cdot \varepsilon_{S_{\rm pad}}}$$