Machine learning applications for SWGO

Find a needle in a haystack...

Gamma/hadron discrimination

Find a needle in a haystack...

Gamma/hadron discrimination

LHAASO experiment - Tibet - 4400 m

Buried Water Cherenkov Detectors

Absorb e.m. shower component to detect muons

SWGO site

Atacama Natural Park - Chile - 4770 m a.s.l.

Burying detectors (LHAASO strategy) or building 5 m height water tanks (HAWC strategy) is **costly**, **impractical**, and **environmentally unfeasible**

Looking for muons in shallow stations

The Mercedes WCD station

The concept

Conceição et al. Eur.Phys.J.C 81 (2021) 6, 542 González et al. Neural Comput & Applic 34, 5715-5728 Assis et al. Eur.Phys.J.C 82 (2022) 10, 899

Looking for muons in shallow stations

Analyse the PMT signal time trace recurring to ML algorithms

Conceição et al. Eur.Phys.J.C 81 (2021) 6, 542 González et al. Neural Comput & Applic 34, 5715-5728 Assis et al. Eur.Phys.J.C 82 (2022) 10, 899

Gamma/hadron separation

$$P_{\gamma h}^{\alpha} = \sum_{i}^{n} P_{\mu,i}^{\alpha} (r > r_{min})$$

Conceição et al. Phys.Lett.B 827 (2022) 136969

Accessing sub-TeV shower energies...

What can be done when there aren't enough muons?

There's information in the shower footprint!

But the challenge lies in dealing with the overwhelming atmospheric muon background (~23 stations per event)

Conceição et al. Phys.Rev.D 111 (2025) 4, 043047

Conceição et al. Phys.Rev.D 111 (2025) 4, 043047

Shower

Noise-free

29 WCDs μ

(~6000 p.e.)

Shower Proton shower 126 GeV 68 WCDs (~2500 p.e.)

-100

50

100

Conceição et al. Phys.Rev.D 111 (2025) 4, 043047

Conceição et al. Phys.Rev.D 111 (2025) 4, 043047

Excellent
gamma/hadron
separation even
for proton
showers with
low muonic
content

< 40°) events cosmic

Detection astrophysical HE neutrinos

events Down-going

events neutrino

Up-going

Upward-going neutrino identification chain

Background-free identification of upward-going neutrinos through the analysis of PMT signal time traces.

Catching neutrinos with a single WCD

- Explore the PMT signal time trace structure recurring to ML algorithms (Transformer architectures based on self-attention mechanisms):
 - \diamond Identify up-going ν from cosmic ray background
 - Reconstruct the direction of the neutrino (i.e. the muon traversing the WCD)

Alvarez-Muñiz et al. Phys.Rev.D 110 (2024) 2, 023032

Improving the ν direction reconstruction

Alvarez-Muñiz et al. Eur. Phys. J. C 85 (2025) 8, 842

Multiple 8" PMTs

Multiple 3" multi-PMTs

Bottom 3" multi-PMT + top 3" PMT(s)

Improving the ν direction reconstruction

Alvarez-Muñiz et al. Eur.Phys.J.C 85 (2025) 8, 842

Multiple 8" PMTs

Prototype of the Mercedes station in SWGO

Improving the ν direction reconstruction

Alvarez-Muñiz et al. Eur.Phys.J.C 85 (2025) 8, 842

Another way to detect neutrinos @ SWGO/LHASSO

Taking advantage of very inclined showers

Alvarez-Muñiz et al. Phys. Rev. D 106 (2022) 10, 102001

An experiment such as SWGO would be able to detect around 2 neutrinos with E>100 TeV per year

Summary

- By combining machine learning algorithms with the design of a shallow WCD station, we have demonstrated the potential to:
 - dentify muons in TeV air showers, enabling excellent gamma/hadron separation.
 - Distinguish gamma-induced from cosmic-ray showers using the footprint alone, even in the absence of muons.
 - Leverage a gamma-ray ground-based observatory to achieve sensitivity to astrophysical neutrinos.

BACKUP SLIDES

Uncertainties on EAS description at lower energies

Lateral extension in x [m]

Lateral extension in x [m]

Estimation of the effective mass

Effective mass for point-like sources

$$M_{\text{eff}}(E_{\nu}, \theta) = \int N_{\text{stations}} \varepsilon(x, y, D, \theta, \phi, E_{\nu}) dx dy dD [g]$$

$$\varepsilon(x, y, D, \theta, E_{\nu}) = \frac{\text{number of events selected as upgoing}}{\text{number of events simulated}} \in [0, 1]$$

