

A Proposal for a Low-Energy Trigger

Pedro Costa^{1,2}

Liliana Apolinário^{1,2}, Pedro Assis^{1,2}, Pedro Brogueira^{1,2}, Ruben Conceição^{1,2}, Giovanni La Mura¹, Mário Pimenta^{1,2}, Bernardo Tomé^{1,2}

¹LIP, Lisbon Portugal ² IST, ULisboa, Portugal

September 19th, 2025 SWGO-LIP meeting, Lisbon

FCT Research Grant UI/BD/153576/2022

Original Procedure

Simulated events, CORSIKA (version 7.5600):

- Altitude: 4.7 km;
- Primary particles: proton, gamma;
- $\theta = 10^{\circ}, 30^{\circ};$
- Energy spectrum E^{-1} , from \sim 10 to 250 GeV

Detector configuration:

- Array area: 80 000 m²;
- Fill factor: 80%;
- Energy to signal parametrization from single layer station with Mercedes configuration

Procedure - Base principle:

- Particles in shower front lay approximately in a plane;
- 3 triggered stations define plane in (X, Y, T) space, normal vector points to a direction (θ, ϕ) ;
- Go over all 3-station combinations in **200** ns window to reconstruct shower direction

Original Procedure

Signal event

• Normal vectors point in a clear direction, well defined peak in (θ, ϕ) plane matching the reconstructed particle direction.

Background event

(superposition of tens of low energy cosmic rays)

No clear direction stands out.
 Broad accumulation near vertical direction.

Sky semi-hemisphere histogram with equal-area cells filled with **direction of normal vectors** (θ, ϕ)

• **Each cell**: number of normal vectors whose direction falls within the cell

Cells clustered into "jets"

 QCD jet inspired algorithm¹ used to improve signal direction reconstruction

Size of a jet direction (C_{3i}^N) :

 Number of vectors forming a clustered jet

¹Successive combination jet algorithm for hadron collisions, S.D. Ellis, D.E. Soper, Phys. Rev. D 48, 3160 (1993). DOI 10.1103/PhysRevD.48.3160

Number of cells in sky semi-hemisphere (typically 1000 or 5000) affects procedure performance

Selected clustered jet directions

Update cumulative lookup table of sky directions.

Alert emitted when lookup table cell **surpasses a threshold**.

Shower direction estimate (θ, ϕ) obtained from largest jet cluster

• **Infinite number of planes** can be drawn from this normal vector

Shower plane definition incomplete: a **reference point** is **required**

Reference point definition:

 Take spatial coordinates of barycentre: (X, Y)

- Take spatial coordinates of barycentre: (X, Y)
- 2. Define a **vertical line** in the (X, Y, T) space passing through barycentre

- Take spatial coordinates of barycentre: (X, Y)
- 2. Define a **vertical line** in the (X, Y, T) space passing through barycentre
- 3. Accumulate in a **histogram** the values of $Z = c \cdot T$ of the **intersection** of 3-station normal planes and the vertical line

- Take spatial coordinates of barycentre: (X, Y)
- 2. Define a **vertical line** in the (X, Y, T) space passing through barycentre
- 3. Accumulate in a **histogram** the values of $Z = c \cdot T$ of the **intersection** of 3-station normal planes and the vertical line
- 4. Take most frequent value of Z.
 Define interval containing values of Z
 with frequency higher or equal than
 10% of maximum frequency.

- Take spatial coordinates of barycentre: (X, Y)
- 2. Define a **vertical line** in the (X, Y, T) space passing through barycentre
- 3. Accumulate in a **histogram** the values of $Z = c \cdot T$ of the **intersection** of 3-station normal planes and the vertical line
- 4. Take most frequent value of Z.
 Define interval containing values of Z
 with frequency higher or equal than
 10% of maximum frequency.

Define **2 reference points** using:

- Spatial coordinates of the barycentre (X,Y)
- Edges of the computed range of Z values

From the reference points define **2 planes**

Account only for stations contained between the 2 planes

Reapply jet clustering algorithm, only with normal vectors from combinations of **selected stations**

Trigger Procedure

Reconstructed direction

of signal source

 \Downarrow

Direction of jet

Trigger Variable

Content of jet cluster corresponding to reconstructed direction

Gamma and Proton shower tagging efficiency curves

Used in **logarithmic form**: $log(C_3^N)$

Set a **threshold value**, $log(C_3^{NT})$ above which an event is triggered

Trigger Efficiency

Trigger efficiencies as a function of shower energy (including atmospheric background)

Define a cut in $\log(C_3^N)|_{max}$

- C_3^N higher than threshold value (C_3^{NT}) triggers the event
- C_3^{NT} determines atmospheric background rejection factors

For $\theta=10^\circ$ and $\varepsilon_{bkg}=10^{-3}$, trigger efficiency of **20**% for gammas (protons) with energies of about **50 GeV** (150 GeV).

Alert Generation

Alerts sent to the **global network of Astrophysics Observatories**

• Stringent standards to minimize false alerts.

Angular accuracy maintained for gamma sources with **proton shower** background with **comparable number of active stations**.

- Proton showers with energy >100/200 GeV should not hinder gamma source alerts;
- Gamma source has well-defined direction; protons have erratic distribution.

Angular Resolution

Angular resolution as a function of shower energy

Angular accuracy:

 $2^{\circ} - 3^{\circ}$ for **gammas** with energies as low as a **few tens of GeV**

• Trigger flexibility:

Possibility of temporarily **downgrading** requirements to save events from region linked to **external alerts**.

Alert issuance:

Based on pre-defined criteria for observed events from a region in the sky.

Alert Issuance Example

This work

- Significance (S/ \sqrt{B}) of signal from GRB 130427A 1 ω as a function of integrated time ($\varepsilon_{bkg}=10^{-3}$)
 - Vertical dashed lines indicate time at which $S = 5\sqrt{B}$.

 Alert could be issued after less than
 2 seconds, with the accumulation of over 100 counts

Alert Issuance Example

Detectable fraction of simulated gamma-ray bursts (GRBs) redshift distributions

 Based on 1000 random redshift distributions from 140 GRBs without measured redshifts¹ (observed by Fermi -LAT over 10 years)

Improvement in **expected number of detections**, \sim 50% of simulations predict:

Nb.Detections	$arepsilon_{bkg} = 10^{-3}$	$arepsilon_{bkg}=10^{-5}$
New Trigger ²	>34	>26
Nb.Stations Trigger	>23	>17

 2 energy threshold: $E_{low} = 125 \text{ GeV}$

Summary

- Low-energy trigger strategy shows strong potential for SWGO operation:
 - Energy thresholds down to tens of GeV
 - Background rejection factors of 10³-10⁵
 - Angular resolution of 2°-3° at trigger level
- Enables continuous sky surveillance and rapid alert dissemination:
 - Critical for detecting transients (GRBs, flares)
 - Improves statistics on extended and diffuse sources

- Article describing this work published in JCAP:
 - Identification of low energy neutral and charged cosmic ray events in large wide field observatories, L.Apolinário et al., JCAP 04 (2025) 029, DOI: 10.1088/1475-7516/2025/04/029

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

partículas e tecnologia

MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

Backup Slides

Low Energy Trigger Motivation

- Low energy thresholds critical to collect reasonable statistics on:
 - **Transients** (e.g. VHE emission from GRBs and flares);
 - Extended sources (e.g. Fermi bubbles), and diffuse gamma emission.
- Low energy trigger system needs rejection factors of the order of ${\bf 10^3 10^5}$.
- Trigger strategy based on a small number of hit stations saturates Data Acquisition (DAQ) system.

- If shower core located within the array $(d_{bar} \in [0, 150]m)$:
 - Factor of 2-3 between energy values/bins with similar number of active stations and different primary particles:
 - Proton [100, 158] GeV gamma [40, 63] GeV
 - Proton [158, 251]GeV gamma [63, 100]GeV

- Rate of charged cosmic-rays with E > 100(200) GeV :
 - For a field of view of 2 sr, \sim 500(130) kHz.
 - For 200 ns time window, 1 event with every 10(38) time windows
 - Not a significant source of background for a source of continuous gamma emission

- Main source of background at high altitude: atmospheric muons
- Probability of a particle triggering a detector unit:

 $1-\exp(-F \ k \ E)$, scale factor F

- F = 1, mean number of background stations ~23;
 - Fluctuate number of background stations with Poisson distribution.

Number of stations triggered by atmospheric muons in a 200 ns time window

Trigger rate as a function of the threshold on number of active stations. Point of saturation

Simulated events:

- **CORSIKA** (version 7.5600),
- Altitude: 4.7 km;
- Primary particles: proton, gamma;
- $\theta = 10^{\circ} (\sim 25\,000\,\text{files}), 30^{\circ} (\sim 6000\,\text{files})$
- Energy spectrum E^{-1} , from ~ 10 to 250 GeV
- Values of φ follow uniform distribution
- Low-energy hadronic interaction model: FLUKA;
- High-energy hadronic interaction model: QGSJet-II.04;
- Shower core position randomized uniformly within the array area multiple times per file;

Detector configuration:

- Array area: 80 000 m²;
- Fill factor: 80%;
- Altitude: 5000 m;
- Energy to signal parametrization from single layer station with Mercedes configuration (E1)

 Direction of normal vectors clustered into "jets" using a QCD jet inspired algorithm¹ to improve signal direction reconstruction Example of application of jet clustering algorithm² Clusters highlighted with different colours

¹Successive combination jet algorithm for hadron collisions, S.D. Ellis, D.E. Soper, Phys. Rev. D 48, 3160 (1993). DOI 10.1103/PhysRevD.48.3160

²The anti-kt jet clustering algorithm, M. Cacciari et al, JHEP04(2008)063. DOI 10.1088/1126-6708/2008/04/063

- Maximum jet size per event (after removing background): C_3^N
 - Direction of jet taken as reconstructed direction of signal source
 - Content of cell corresponding to reconstructed direction (also accounting for background) taken as **event trigger variable**, in logarithmic form, $\log(C_3^N)|_{max}$
 - Set a **threshold value** (C_3^{NT}) above which an event is triggered

Angular resolution as a function of shower energy

- Reasonably high angular accuracy (2° 3°)
 for gammas with energies as low as a
 few tens of GeV
- Possibility of downgrading trigger requirements during a time period to save events from region corresponding to an external alert.
- Alerts should be issued based on predefined criteria for observed events from a region in the sky.