

Outer Array Perspectives from Brazil

Ulisses Barres de Almeida

September 19th, 2025 Lisbon Workshop, online

Motivation for the E-tanks

- HAP notes <u>21-003</u>, <u>21-008</u>
 - Compact design to minimize water usage
 - Simplification of logistics, installation and maintenance
 - Robustness and reliability of WCD unit
 - Flexibility of array design
 - Array density, unit size and characteristics, thermal insulation

E-tank Development at CBPF

- Extensive experience drawn from Pierre Auger
- In cooperation with BR company Rotoplastyc
- HAP notes <u>23-003</u>, <u>24-001</u>
- New design, new resin (UV protection), new rotomolding technique
 - UV protection (UV-30 vs. UV-15 in Auger)
 - Rotomolding Patent BR1020210266902
- Recently: new reflective resin in the tank interior under development
 - Reflective properties aiming at substituting the use of a Tyvek liner
 - Samples can be sent to tests on request

Shallow HDPE Tank

Flexibility of sizes:
limited by transport
logistics 3.6 ø x 3.6 h (m)

- Design of insulated tank
- Later adapted for single-wall

Shallow HDPE Tank

E-tank inventory:

- 1 black tank at CBPF (with hodoscope)
- 1 black tank at Pierre Auger
- 2 tanks (black + reflective) at SPA
- 1 insulated tank in production
- + 1 double layer tank under development
- CNPq Fund secured for 4 more tanks

The insulated tank has not yet been produced, to give priority to the single layer design - but is next online in our activities.

Plan to produce over next months to send to the site as 3rd plastic tank

Notes on tank production

- Oven-based rotomolded process essential for quality and altitude production
- A single oven can produce 4 tanks a day
- First 4 prototypes were made on singleattempt indicating robustness and reliability of the technique
- Estimated large-scale costs:
 - HDPE unity: c. 2-3 kUSD
 - + 1-2 kUSD liner+water

Notes on tank production

Notes on tank production

E-tanks at San Pedro

Two tanks currently on storage at RadioSky

Reflective Resin

- Latest R&D Development, to substitute the need for a reflective Tyvek liner
 - Installation of multi-PMT unit at CBPF took < 40 min (3-4 ppl)
 - + time for water filling of the 15 m3 tank of 1+ hour
 - working WCD unit on site in few hours ==> 4 working WCD units per day with handful of workers

Reflective Oxide Nanocoating

Reflective Resin

- Latest R&D Development, to substitute the need for a reflective Tyvek liner
 - Installation of multi-PMT unit at CBPF took < 40 min (3-4 ppl)
 - + time for water filling of the 15 m3 tank of 1+ hour
 - working WCD unit on site in few hours ==> 4 working WCD units per day with handful of workers

Reflective Oxide Nanocoating

Preliminary:

- Reflectance tests
- Baseline Barium Sulfate
- In visible UV it demonstrates better efficiency than Tyvek film
- We are improving the formula (RON) hexane-based polyethylene (same as tank)

SWGO film: sample taken by Michael S. to México, similar to Auger film response.

Reflective Oxide Nanocoating

Preliminary:

- Reflectance tests
- Baseline Barium Sulfate
- In visible UV it demonstrates better efficiency than Tyvek film
- We are improving the formula (RON) hexane-based polyethylene (same as tank)

SWGO film: sample taken by Michael S. to México, similar to Auger film response.

Further development required below 400 nm, ongoing.

Aimed at being implemented for the insulated tank within next months.

Where are we now?

- HAP notes <u>23-003</u>, <u>24-001</u> describe in detail the production and implementation plan of an E-tank based SWGO array
 - E-tank prototypes are ready to began tests in multiple sites and conditions.
 - CBPF/MCTI invested circa 200 kUSD in the project R&D
 - Integration with multi-PMT module is demonstrated and a complete WCD unit is in operation at CBPF, within an hodoscope
 - The E-tank is the leading outer-array element for SWGO, and tests should direct further optimization.

Coming up in 2026

- E-tanks will compose the SWGO Pathfinder
 - We will test various designs: thermal insulation, black or reflective inner wall ==> ready for construction in 2026/27.

Outer array implementation plan

- A single oven can produce 4 tanks a day
- Production model involves fabrication near by the site, at Calama.
- \circ The 4 tanks can be easily transported to the site on two trips, and filled with water with 2 x 30 m³ tanker truck
- Complete deployment of a water-filled, instrumented tank in circa 4 hours (with 4 ppl)
- We can therefore deploy 4 tanks / day with a crew of 8 ppl :
 - 1000 tanks in one a year
 - A 2000-tanks outer array can be completed in two years.

Production model

- Rotoplastyc is a close partner in the R&D phase, including for the development of the rotomolding technique and new reflective resin
- The company is willing to move production of SWGO tanks to Calama
- The project would provide the warehouse + all basic machinery and installations, and contract the production of the tanks.

Production model

Scenario:

- Calama factory could be established between 2026-27
- Production & deployment of 1000 outer-array tanks would take place in 2028
- This gives outer-array activities 2 extra years of optimizations and preparations of various elements

Funding outlook

- We have started discussions with FINEP and MCTI.
- Waiting for a meeting to take place for presenting a formal request of funds.
- Exact values are TBD, but aim to > 4 MUSD (or equivalent to build at least 1,000 tanks + the necessary logistical support for construction)
- If approved, disbursement would start in 2026, planned in 3 installments:
 - 2026-27: preparations and factory set up
 - 2028 : tank construction and deployment