Looking forward The Precision Proton Spectrometer at the LHC

Michele Gallinaro michgall@cern.ch

LIP Lisbon February 3, 2016

The PPS project
 Physics motivations
 Tracking and timing detectors
 Detector performance and physics prospects
 Summary

The PPS project

- It is a joint CMS and TOTEM project that aims at measuring the surviving scattered protons on both sides of CMS in standard running conditions
- Tracking and timing detectors inside the beam pipe at ~210m from IP5
- Project approved in Dec. 2014 by LHCC
- Exploratory phase already begun, data taking foreseen for second half of 2016 (beginning of 2017)

ERN-LHC-2014-02

TECHNICAL DESIGN REPORT FOR CMS-TOTEM PRECISION PROTON SPECTROMETER

Physics motivations

Central Exclusive Production

- photon-photon fusion
- gluon-gluon fusion in color singlet, $J^{PC}=0^+$
- High-p_T system in central detector, together with very forward protons in PPS
 - Require momentum balance between central system and forward protons, provides strong kinematical constraints
 - Mass of central system measured by momentum loss of the two leading protons
- Gauge boson production by photon-photon fusion and anomalous couplings (γγWW, γγZZ, and γγγγ)
- Search for new BSM resonances
- Study of QCD in a new domain

Experimental apparatus

- Roman Pot stations into beampipe secondary vacuum
 - -Tracking: 2 horizontal pots at 204m and 214m
 - -Timing: 2 (1 for now) horizontal pots at 215m

Experimental challenges

- Ability to operate the detectors close to beam (15-20σ) to maximize acceptance for low momentum loss (ξ) protons
- Limit impedance introduced by beam pockets
 - improved RF shielding of RPs
 - (R&D on Movable Beam Pipe as future option)
- Sustain high radiation levels
 - For 100/fb, proton flux up to 5x10¹⁵cm⁻² in tracking detectors, 10¹²n_{eq}/cm² and 100Gy in photosensors and readout electronics
- Reject background in the high-pileup (μ =50) of normal LHC running

215m

CT-PPS

mina

214m

CT-PPS

All services are installed (cables, cooling, etc.)

beam

Roman Pots

- Tests in 2012 of TOTEM RPs at high luminosity revealed issues (vacuum, beam dumps, heating)
- Improvements carried out
 - -New RF shielding in standard box-shaped RPs
 - -New cylindrical RP for timing detectors
 - $-10 \ \mu m$ thick copper coating
 - -New ferrites

RP insertion tests

• RP insertions to 25σ in 2015

- Tests up to L=4x10³³cm⁻²s⁻¹
- No beam instabilities introduced
- BLM response well below threshold
- Vacuum pressure: no problems observed
- Temperature in RP increases with luminosity. No problems expected.
- Extrapolations to 10³⁴ and closer distance to beam look promising

All horizontal pots at N σ

Detectors

Tracking detectors

- -Goal: measure proton momentum
- -Technology: silicon 3D pixels (6 planes per pot)

Timing detectors

- -Goal: identify primary vertex, reject "pileup"
- $-\sigma_{time}$ ~10ps $\Rightarrow \sigma_{z}$ ~2mm
- -Technology: silicon/diamond

"3D" pixel sensors with columnar electrodes

Tracking detectors

- 3D sensor technology
- Intrinsic radiation hardness (to withstand overall integrated flux of 5x10¹⁵ protons/cm²
- 200µm slim edges (small dead edge to approach beam as close as possible)
- Spatial resolution <30μm
- Front-end chip: latest version of PSI46dig, same as CMS Pixel Phase I upgrade

Tracking detectors (cont.)

FBK 11-37-02: Cell Efficiency at 0 degree

0-degree angle

11-37-02: Cell Efficiency at 5 degree

- 2 stations per side, 6 detector modules each pot
- Planes tilted by 18.4° to optimize efficiency and resolution
- Thin design studied to minimize impact on beam, insertion in pot, approach to beam

Timing detectors

- Proton timing measurement from both sides of IP5 allows to determine the primary vertex, correlate it with the central detector's, reject pileup
 - Time resolution $10ps \rightarrow 2mm$
 - Reasonable segmentation
 - Radiation hard
 - Minimize impact on beam

Timing detectors (cont.)

Diamond detectors

- $\sigma_{\rm T}{\sim}80 \text{ps}$ per plane, i.e. ${\sim}50 \text{ps}$ with 4 planes
- Variable pad dimensions to optimize occupancy
- Custom-made readout electronics – NINO (discriminator)+HPTDC
- Test detector package installed in Oct. 2015
- Preparing for installation in 2016

Timing detector R&D

Pursuing R&D to improve performance

• Diamonds, silicon-based, quartz, etc.

Challenges

- Radiation-hardness
- Fast signals
- Finer segmentation reducing channel occupancy
- Thin and light, allow multiple layers N
 - reducing nuclear interaction
 - Time resolution ~1/sqrt(N)

Test beam @ CERN in 2015

Timing detector R&D

GasToF system

- Prototype test ongoing Quartz (Quartic bars)
- ~40ps resolution
- **Diamond detectors**
- ~50 ps resolution with 4 planes
 Silicon detectors
- Ultra-Fast Silicon Detectors
- Hyper-Fast Silicon detectors

Detector acceptance

Acceptance: X vs Y (includes ξ ,t ellipses)

•Particle gun (t, ξ , ϕ) based on HECTOR at \sqrt{s} = 13 TeV

z=204m (X as of CMS)

$\boldsymbol{\xi}$: proton fractional momentum loss

t: 4-momentum transferred squared

Mass acceptance and resolution

Expected performance

⇒use timing information to reject pileup

(time difference of two protons is correlated with vertex position)

WW production

CMS-FSQ-13-008

- -AQGCs predicted in BSM theories -parameters: a_0^W/Λ^2 , a_C^W/Λ^2
- Deviations from SM can be large

WW production: Selection

W

Dilepton decay channel (diff. flavor)
 –OS leptons (p_T>20GeV, |η|<2.4)

- -No extra tracks from vertex
- -M_{II}>20 GeV
- –Use $p_T(\mu e)$ to discriminate
- SM signal region -p_T(μe)>30 GeV
- AGQC search -p_T(μe)=30-130GeV -p_T(μe)>130 GeV

WW production: Results

CMS-FSQ-13-008

Cross section measurement

 $\sigma_{\rm meas} = 12.3^{+5.5}_{-4.4} {\rm ~fb}$

- SM prediction is σ =6.9±0.6 fb
- Observed significance above background-only hypothesis: 3.6σ

sample	yields
inclusive WW	$2.0{\pm}0.4$
$\gamma\gamma \to \tau\tau$	$0.9{\pm}0.2$
$\text{DY} \rightarrow \tau \tau$	0
diffractive WW	$0.1{\pm}0.1$
others	$0.5{\pm}0.2$
total backgrounds	$3.5{\pm}0.5$
signal (SM exclusive $pp \rightarrow WW$)	$5.3{\pm}0.1$
data	13

AQGC results

-95%CL limits on a_{C}^{W}/Λ^{2} , a_{C}^{W}/Λ^{2}

 Improvement of two orders of magnitude over LEP/Tevatron

Prospects with PPS: Yields (in fb)

- Select WW events, study $e\mu$ final state
- Apply central lepton and PPS acceptance cuts

σ=10ps (30ps)

Selection	Cross section (fb)						
	exclusive WW	exclusive WW		inclusive WW		exclusive $ au au$	
		(incorrectly reconstructed)					
generated $\sigma \times \mathcal{B}(WW \to e\mu \ \nu \bar{\nu})$	0.86±0.01	N/A		2537		1.78 ± 0.01	
≥ 2 leptons ($p_{\rm T} > 20$ GeV, $\eta < 2.4)$	0.47±0.01	N/A		1140±3		$0.087 {\pm} 0.003$	
opposite sign leptons, "tight" ID	0.33±0.01	N/A		776±2		0.060 ± 0.002	
dilepton pair $p_{\rm T}>30~{ m GeV}$	0.25±0.01	N/A		534±2		$0.018 {\pm} 0.001$	
protons in both PPS arms (ToF and TRK)	0.055 (0.054)±0.002	0.044 (0.085)±0.003		11 (22)±0.3		0.004 ± 0.001	
no overlapping hits in ToF + vertex matching	0.033 (0.030)±0.002	0.022 (0.043)±0.002		8 (16)±0.2		0.003 (0.002)±0.001	
ToF difference, $\Delta t = (t_1 - t_2)$	0.033 (0.029)±0.002	0.011 (0.024)±0.001		0.9 (3.3)±0.1		0.003 (0.002)±0.001	
$N_{ m tracks} < 10$	0.028 (0.025)±0.002	0.009 (0.020)±0.001 0.02		0.03 (0.14)±0.01		$0.002{\pm}0.001$	
	opposite sign leptons, "tight" ID $a_0^W/\Lambda^2 =$ dilepton pair $p_T > 30 \text{ GeV}$ (aprotons in both PPS arms (ToF and TRK)0.52 (a)		$a_0^W/\Lambda^2 = 5$	$5\cdot 10^{-6} \mathrm{GeV}^{-2} \mid a_{C}^{V}$		$\mu_C^W/\Lambda^2 = 5 imes 10^{-6} { m GeV^{-2}}$	
			$(a_{C}^{W} = 0)$		$(a_0^W = 0)$		
			0.52 (0.5	0.50)±0.04		0.18 (0.17)±0.02	
	no overlapping hits in ToF detectors 0.35 (0		0.35 (0.3	0.32)±0.03		0.12 (0.11)±0.01	
	ToF difference, $\Delta t = (t_1 - t_2)$		0.35 (0.32)±0.03		0.12 (0.11)±0.01		
AQGC x10 larger	$N_{ m tracks} < 10$		0.27 (0.24)±0.03		0.11 (0.10)±0.01		

Yields vs distance to beam

Potential enhancement of sensitivity with closer approach:

- Signal yield grows by ~x2 when going from 15 σ to 10 σ
- Background is more or less flat

24

M. Gallinaro - "Looking forward: A Precision Proton Spectrometer" - Caparica, Feb. 3, 2016

AQGC expected limits

BSM searches: diphoton resonance

CMS-EXO-15-004, arXiv:1512.0575

Diphoton event with $m(\gamma\gamma) = 745 \text{ GeV}$

Summary

- CT-PPS will allow precision proton measurement in the very forward region on both sides of CMS
- A new tool to enhance the potential for BSM searches
- Studied physics and detector performance
- Tracking and timing detector options
- Experimental challenges are being addressed
- Consolidation phase in 2016 and beyond
- ⇒Rich physics program with emphasis on BSM searches

Thesis proposal: ``Development of high-performance timing detectors for the forward proton spectrometer''

Expected radiation doses

• Radiation levels in detector studied using Totem data and simulation

Per 100 fb⁻¹:

- Proton flux up to 5x10¹⁵ cm⁻² in pixel detectors
- 10¹² n_{eq}/cm² and 100 Gy in photosensors and readout electronics

Tracking detectors (cont.)

6 detector planes per station

• For each plane:

- 16 x 24mm² 3D silicon pixel sensors
- 150(x) x 100 (y) μm² pixel pattern
- 6 PSI46dig readout chips (52x80 pixels each)

3D sensors consist of an array of columnar electrodes

Interesting features w.r.t. planar sensors:

- Low depletion voltage (~10V)
- Fast charge collection time
- Reduced charge trapping probability and high-radiation hardness
- Slim edges, dead area of 100-200mm
- Spatial resolution comparable to planar sensors

Inter-electrode distance 62.5µm

Pileup rejection: timing

$$\sigma_{z_{vtx}} = \frac{c}{2} \sqrt{2\sigma_{\Delta t}^2} \overset{\sigma_{\Delta t} = 10 \text{ps}}{\approx} 2 \text{ mm}$$
$$\overset{\sigma_{\Delta t} = 30 \text{ps}}{\approx} 6 \text{ mm}$$

M. Gallinaro - "Looking forward: A Precision Proton Spectrometer" - Caparica, Feb. 3, 2016

Timing detectors (cont.)

- Cerenkov light in quartz radiator bars
- Quartic module:
 - -20 (4x5) 3x3 mm² L-shaped bar elements
 - –bars separated by 100 μ m (total internal reflection)
- Two modules in one RP
- Beam tests: σ ~30ps (~20ps for two in-line)
- Readout electronics:

Electronics

- Electronics read-out chain
- Front-end/SiPM board
- NINO (amplifier-discriminator)
- Digitizer board (motherboard+mezzanine) – control of SiPM control board (bias voltages, etc)

Beam tests

- Test modules with 30 and 40 mm radiator bars
- Time resolution σ =36 ps (30 mm bar)
 - Time difference between L-bar and reference signal
 - -2-in-line \Rightarrow 25ps (improvements possible)

Photosensors

- SiPMs Hamamatsu MPPC S12572-050
 - -Qualified for 10¹² n/cm² (CMS HCAL)
 - -Low afterpulse
 - -Increased leakage current may impact time resolution
- Possible use of GInP photosensors (Shashlik Phase2 option)

SiPM readout board

Movable Beam Pipe

- Main body of MBP in stainless steel
- Copper coated for RF shielding and Non-Evaporative Getter (NEG) coated
- Interior surface tapered into a conical shape to reduce RF impedance effects
- At 1mm, RF impedance estimated at 0.05% (trans) and 0.5% (long)
- Thin-window (0.3mm) in AlBeMet alloy (38% aluminum, 62% beryllium) to minimize multiple scattering

