# Hello, I'm Pedro and I have a problem Understanding Cosmic Rays

pedro.assis@lip.pt 1

Cosmic Rays The history told by detectors

#### pedro.assis@lip.pt 2

#### Cosmic Rays and the electrometer

On the leakage of Electricity through dust-free air. By C. T. R. WILSON, M.A., Sidney Sussex College.

[Read 26 November 1900.]



Aeronautisches Gelände im Wiener Prater, von dem aus V. F. Hess in den Jahren 1911/12 seine ersten Freiballon-Forschungsfahrten unternommen hatte. (Courtesy of Heeresgeschichtliche Museum, Vienna)



Hess bei Ballonlandung (1912).







may and in allising against men 2.3 --You relativitie case -**C** (1) HV<sup>2</sup> 0.0 -(11 - was of particle V= select of enoung field have and a collision give every game -....  $\frac{M}{2}\left(U+2V\right)^{\frac{1}{2}}=\frac{MU^{\frac{1}{2}}}{2}=\frac{M}{2}\left(4UV+4V^{\frac{1}{2}}\right)=$ .... ..... Francis after sellicion ( Jule and ) que every fain M(-2004 + 2 V) **1** Everage gain order -MVZ 810 **2**3 Relativistic : order 1.0 wp ..... ..... **.** .... ----

#### The Cloud Chamber









## Particle Physics in a box "seeing" particles

Positron (Anderson, 1932)

 $\mu$  (Anderson, 1937)

 $\pi$  (Latter, 1947)

50s: K,  $\Lambda$ ,  $\Sigma$ ,  $\Xi$ ,  $\Omega$  ...





#### Spread of avalanches in a Geiger-Muller tube



# Is there a particle?





#### Application: Measure coincidence rate



## Pierre Auger

1938

Coincidencies! Possible with "fast" electronics





Coincidence definition depends on time resolution

#### **Result: Air Showers**





1938

## Coincidencies!

Possible with "fast" electronics



First estimates of the shower energy!



#### **Extensive Air Showers (EAS)**



#### High Energy Cosmic Rays



#### The PMT









#### Application: Auger – Surface detector



Signal  $\rightarrow$  Number of Particles Time  $\rightarrow$  Direction

vertical muon



Signal is digitized with ADCs 40 MHz = 25 ns = 25 x  $10^{-9}$  s GPS synchronization ~ 10 ns FPGA: Digitalization Triggers Synchronization



#### Application: Auger – Fluorescence detector

Signal  $\rightarrow$  Number of Particles Time & pixels  $\rightarrow$  Direction Signal vs time  $\rightarrow$  Air shower profile Signal is digitized with ADCs 10 MHz = 100 ns

FPGA: Digitization Triggers Synchronization Signals sent to PC





Time trace (bkg subtracted)



#### **Pierre Auger Observatory**





Hybrid Detector 1600 Detectors (Water tanks – Cherenkov) In a 1500m grid Covered area = 3000 km<sup>2</sup> 27 (24+3) fluorescence telescope

## 3 000 km<sup>2</sup>



#### **Results:** Auger

1018

18.0

18.5

 $E^3 J(E) \left[ eV^2 \, \mathrm{km}^{-2} \, \mathrm{sr}^{-1} \, \mathrm{yr}^{-1} \right]$ 

10<sup>3</sup>

10<sup>36</sup> 17.5

E [eV]

 $log_{10}^{19.0}(E/eV)$ 

19.5

[g/cm<sup>2</sup>]

82

800 max ×

> 720 700 680

66

10<sup>18</sup>

Auger 2013 prelimina

20.0

20.5

EPOS-LHC

QGSJetII-04

10<sup>19</sup>

SibvII2.1

[cm<sup>2</sup>/g]

dN/dX<sub>max</sub>



What is their nature?



Are there companion particles? Neutrinos, Photons?







 $\langle E \rangle = 10^{18.24} \, \mathrm{eV}$ 

80

J(Xmax) [g/cm<sup>2</sup>]

600

10<sup>20</sup>

E [eV]

800

900

X<sub>max</sub> [g/cm<sup>2</sup>]

1018

1000

1100

Auger 2013 preliminary

10<sup>19</sup>

1200

iror

E [eV]

10

 $10^{18} - 10^{18.5} \,\mathrm{eV}$ 

Tail event selection

No fiducial cuts



What, how, and why

#### Complete the puzzle



Composition change?

New Physics?

Why so much muons?

Measure the muons!!

We need more precise measurements!!

## **Measuring Muons**

A dedicated muon detector: An array of particle detector installed beneath the tanks.

Cost-effective.





## What is a RPC

#### **Resistive Plate Chamber**

- Gaseous detector
- Planar geometry
- uniform electrical field imposed.
- High resistive plates in between the electrodes limit the avalanche current.
- Signal is picked up by the induction of the avalanche in the readout pads.



#### Avalanche mode





#### SIGNAL PICKUP MODULE

Total area 150x120 = 18000 cm<sup>2</sup>

Area covered with pads, "efficient" area  $64x18x14=16128 \text{ cm}^2 \Leftrightarrow 90 \%$  of the total area

Area covered with guard rings, 18000 - 16128 = 1872 cm<sup>2</sup>  $\Leftrightarrow$ 10 % of the total area



140 mm





#### **RPCs: a traditional detector in HEP**



### The challenge

In a Cosmic Ray array the detectors must:

- Be standalone
- Have low power consumption
- Be cheap (cost-effective
- Acquire data at fast rates
- Precision timing!

#### Expected results: Muon signals in tank vs RPC

proton,  $10^{19.5} \text{ eV} \theta = 40^{\circ}$ 

ADC counts Tank traces Red – muons Blue - e+/e-Violet - photons ~1600 ns 50 6000 5000 0 1000 2000 3000 4000 t (ns) # hits Muon hits in RPC 0.6 0.4 0.2 0 5000 6000 1000 2000 3000 4000 0 t (ns)

Only muon hits in RPC are shown.



Station 4048 (2182 m)

#### MARTA Readout System



#### **RPC** channel





## MARTA @ Gianni's tank



33



#### Events taken asking coincidence of scintillators:



# LATTES – study VHE Gamma rays

muon • Explore shower particle patterns

with good spatial resolution using

ensitivity to low energy

Photom proton discrimination

Thank you Bernardo

34

Measure energy flow

**RPCs** 

LATTES

Combined detection:

showers

@~ 5000 m

Calorimeter

electron

#### Lattes – the detector



